Self-Gravity Analysis and Visualization Tool For LISA

Self-gravity noise due to sciencecraft distortion and motion is expected to be a significant contributor to the LISA acceleration noise budget. To minimize these effects, the gravitational field at each proof mass must be kept as small, flat, and constant as possible. Most likely it will not be poss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gopstein, Avi M, Haile, William B, Merkowitz, Stephen M
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 575
container_issue
container_start_page 571
container_title
container_volume 873
creator Gopstein, Avi M
Haile, William B
Merkowitz, Stephen M
description Self-gravity noise due to sciencecraft distortion and motion is expected to be a significant contributor to the LISA acceleration noise budget. To minimize these effects, the gravitational field at each proof mass must be kept as small, flat, and constant as possible. Most likely it will not be possible to directly verify that the LISA sciencecraft meets these requirements by measurements; they must be verified by models. The LISA Integrated Modeling team developed a new self-gravity tool that calculates the gravitational forces, moments, and gradients on the proof masses and creates a color coded map of the component contributions to the self-gravity field. The color mapping provides an easily recognized and intuitive interface for determining the self-gravity hot-spots of a spacecraft design. Self-gravity color maps can be generated as true representations of the steady-state, or as an approximation of the variability through computation of the difference values across multiple physical states. We present here an overview of the tool and the latest self-gravity results calculated using a recent design of LISA.
doi_str_mv 10.1063/1.2405101
format Conference Proceeding
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_29613783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29613783</sourcerecordid><originalsourceid>FETCH-LOGICAL-p186t-9e87120e52ad3ed8a333aa56bf49d7d4ab444070a6995c29f53a85be95f9e2663</originalsourceid><addsrcrecordid>eNotzLtOwzAUAFBLgERbGPgDT2wp175-xGNU0YcUiaEFsVU3jSMZmbjECVL5egaYznYYexCwFGDwSSylAi1AXLE5WNQK0Ep1zWYAThVS4fstm-f8ASCdteWM6b2PXbEZ6DuMF171FC85ZE59y99CniiGHxpD6vkhpcjXaeD1bl_dsZuOYvb3_y7Y6_r5sNoW9ctmt6rq4ixKMxbOl1ZI8FpSi74tCRGJtGk65VrbKmqUUmCBjHP6JF2nkUrdeKc756UxuGCPf-95SF-Tz-PxM-STj5F6n6Z8lM4ItCXiL1MuRp4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>29613783</pqid></control><display><type>conference_proceeding</type><title>Self-Gravity Analysis and Visualization Tool For LISA</title><source>AIP Journals Complete</source><creator>Gopstein, Avi M ; Haile, William B ; Merkowitz, Stephen M</creator><creatorcontrib>Gopstein, Avi M ; Haile, William B ; Merkowitz, Stephen M</creatorcontrib><description>Self-gravity noise due to sciencecraft distortion and motion is expected to be a significant contributor to the LISA acceleration noise budget. To minimize these effects, the gravitational field at each proof mass must be kept as small, flat, and constant as possible. Most likely it will not be possible to directly verify that the LISA sciencecraft meets these requirements by measurements; they must be verified by models. The LISA Integrated Modeling team developed a new self-gravity tool that calculates the gravitational forces, moments, and gradients on the proof masses and creates a color coded map of the component contributions to the self-gravity field. The color mapping provides an easily recognized and intuitive interface for determining the self-gravity hot-spots of a spacecraft design. Self-gravity color maps can be generated as true representations of the steady-state, or as an approximation of the variability through computation of the difference values across multiple physical states. We present here an overview of the tool and the latest self-gravity results calculated using a recent design of LISA.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 0735403724</identifier><identifier>ISBN: 9780735403727</identifier><identifier>DOI: 10.1063/1.2405101</identifier><language>eng</language><ispartof>Laser Interferometer Space Antenna (AIP Conference Proceedings Volume 873), 2006, Vol.873, p.571-575</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gopstein, Avi M</creatorcontrib><creatorcontrib>Haile, William B</creatorcontrib><creatorcontrib>Merkowitz, Stephen M</creatorcontrib><title>Self-Gravity Analysis and Visualization Tool For LISA</title><title>Laser Interferometer Space Antenna (AIP Conference Proceedings Volume 873)</title><description>Self-gravity noise due to sciencecraft distortion and motion is expected to be a significant contributor to the LISA acceleration noise budget. To minimize these effects, the gravitational field at each proof mass must be kept as small, flat, and constant as possible. Most likely it will not be possible to directly verify that the LISA sciencecraft meets these requirements by measurements; they must be verified by models. The LISA Integrated Modeling team developed a new self-gravity tool that calculates the gravitational forces, moments, and gradients on the proof masses and creates a color coded map of the component contributions to the self-gravity field. The color mapping provides an easily recognized and intuitive interface for determining the self-gravity hot-spots of a spacecraft design. Self-gravity color maps can be generated as true representations of the steady-state, or as an approximation of the variability through computation of the difference values across multiple physical states. We present here an overview of the tool and the latest self-gravity results calculated using a recent design of LISA.</description><issn>0094-243X</issn><isbn>0735403724</isbn><isbn>9780735403727</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotzLtOwzAUAFBLgERbGPgDT2wp175-xGNU0YcUiaEFsVU3jSMZmbjECVL5egaYznYYexCwFGDwSSylAi1AXLE5WNQK0Ep1zWYAThVS4fstm-f8ASCdteWM6b2PXbEZ6DuMF171FC85ZE59y99CniiGHxpD6vkhpcjXaeD1bl_dsZuOYvb3_y7Y6_r5sNoW9ctmt6rq4ixKMxbOl1ZI8FpSi74tCRGJtGk65VrbKmqUUmCBjHP6JF2nkUrdeKc756UxuGCPf-95SF-Tz-PxM-STj5F6n6Z8lM4ItCXiL1MuRp4</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Gopstein, Avi M</creator><creator>Haile, William B</creator><creator>Merkowitz, Stephen M</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20060101</creationdate><title>Self-Gravity Analysis and Visualization Tool For LISA</title><author>Gopstein, Avi M ; Haile, William B ; Merkowitz, Stephen M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p186t-9e87120e52ad3ed8a333aa56bf49d7d4ab444070a6995c29f53a85be95f9e2663</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gopstein, Avi M</creatorcontrib><creatorcontrib>Haile, William B</creatorcontrib><creatorcontrib>Merkowitz, Stephen M</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gopstein, Avi M</au><au>Haile, William B</au><au>Merkowitz, Stephen M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Self-Gravity Analysis and Visualization Tool For LISA</atitle><btitle>Laser Interferometer Space Antenna (AIP Conference Proceedings Volume 873)</btitle><date>2006-01-01</date><risdate>2006</risdate><volume>873</volume><spage>571</spage><epage>575</epage><pages>571-575</pages><issn>0094-243X</issn><isbn>0735403724</isbn><isbn>9780735403727</isbn><abstract>Self-gravity noise due to sciencecraft distortion and motion is expected to be a significant contributor to the LISA acceleration noise budget. To minimize these effects, the gravitational field at each proof mass must be kept as small, flat, and constant as possible. Most likely it will not be possible to directly verify that the LISA sciencecraft meets these requirements by measurements; they must be verified by models. The LISA Integrated Modeling team developed a new self-gravity tool that calculates the gravitational forces, moments, and gradients on the proof masses and creates a color coded map of the component contributions to the self-gravity field. The color mapping provides an easily recognized and intuitive interface for determining the self-gravity hot-spots of a spacecraft design. Self-gravity color maps can be generated as true representations of the steady-state, or as an approximation of the variability through computation of the difference values across multiple physical states. We present here an overview of the tool and the latest self-gravity results calculated using a recent design of LISA.</abstract><doi>10.1063/1.2405101</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof Laser Interferometer Space Antenna (AIP Conference Proceedings Volume 873), 2006, Vol.873, p.571-575
issn 0094-243X
language eng
recordid cdi_proquest_miscellaneous_29613783
source AIP Journals Complete
title Self-Gravity Analysis and Visualization Tool For LISA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Self-Gravity%20Analysis%20and%20Visualization%20Tool%20For%20LISA&rft.btitle=Laser%20Interferometer%20Space%20Antenna%20(AIP%20Conference%20Proceedings%20Volume%20873)&rft.au=Gopstein,%20Avi%20M&rft.date=2006-01-01&rft.volume=873&rft.spage=571&rft.epage=575&rft.pages=571-575&rft.issn=0094-243X&rft.isbn=0735403724&rft.isbn_list=9780735403727&rft_id=info:doi/10.1063/1.2405101&rft_dat=%3Cproquest%3E29613783%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29613783&rft_id=info:pmid/&rfr_iscdi=true