Using support vector regression for the prediction of the band gap and melting point of binary and ternary compound semiconductors

In this work, atomic parameters support vector regression (APSVR) was proposed to predict the band gap and melting point of III–V, II–VI binary and I–III–VI 2, II–IV–V 2 ternary compound semiconductors. The predicted results of APSVR were in good agreement with the experimental ones. The prediction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid state sciences 2006-02, Vol.8 (2), p.129-136
Hauptverfasser: Gu, Tianhong, Lu, Wencong, Bao, Xinhua, Chen, Nianyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue 2
container_start_page 129
container_title Solid state sciences
container_volume 8
creator Gu, Tianhong
Lu, Wencong
Bao, Xinhua
Chen, Nianyi
description In this work, atomic parameters support vector regression (APSVR) was proposed to predict the band gap and melting point of III–V, II–VI binary and I–III–VI 2, II–IV–V 2 ternary compound semiconductors. The predicted results of APSVR were in good agreement with the experimental ones. The prediction accuracies of different models were discussed on the basis of their mean error functions ( MEF) in the leave-one-out cross-validation. It was found that the performance of APSVR model outperformed those of back propagation-artificial neural network (BP-ANN), multiple linear regression (MLR) and partial least squares regression (PLSR) methods.
doi_str_mv 10.1016/j.solidstatesciences.2005.10.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29613058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1293255805002761</els_id><sourcerecordid>29613058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-18fff31fed2e41e99863a3f470ecbdc12dd4e992b99e23bbf843528b3bd5b7283</originalsourceid><addsrcrecordid>eNqNUctuFDEQHCEiEZL8w1xAXGbjxzxvoIjwUCQu5Gz50V68mrEHtycSV7489u5KHLjk1N3VpSp1dVV9oGRHCe1vDzsMszOYZALUDrwG3DFCurzeEUpfVZd0HHjDydi9zj2beMO6bnxTvUU8EEL6fmgvq7-P6Py-xm1dQ0z1E-gUYh1hHwHRBV_bPKZfUK8RjNOpQMEeESW9qfdyrUtdYE5FaA3Op8JQzsv457hLEI-9DssatgwgLE4Hb7ZihtfVhZUzws25XlWP959_3n1tHn58-Xb36aHRbT-lho7WWk4tGAYthWkaey65bQcCWhlNmTFtRpmaJmBcKTu2vGOj4sp0amAjv6ren3TXGH5vgEksDjXMs_QQNhRs6iknXSF-PBF1DIgRrFijW_IFghJRwhcH8X_4ooRfGDn8LPHu7CVRy9lG6bXDfzpDO1E6FKvvJx7kw58cRHGWMy7mVwgT3MtNnwHFW6s8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29613058</pqid></control><display><type>article</type><title>Using support vector regression for the prediction of the band gap and melting point of binary and ternary compound semiconductors</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gu, Tianhong ; Lu, Wencong ; Bao, Xinhua ; Chen, Nianyi</creator><creatorcontrib>Gu, Tianhong ; Lu, Wencong ; Bao, Xinhua ; Chen, Nianyi</creatorcontrib><description>In this work, atomic parameters support vector regression (APSVR) was proposed to predict the band gap and melting point of III–V, II–VI binary and I–III–VI 2, II–IV–V 2 ternary compound semiconductors. The predicted results of APSVR were in good agreement with the experimental ones. The prediction accuracies of different models were discussed on the basis of their mean error functions ( MEF) in the leave-one-out cross-validation. It was found that the performance of APSVR model outperformed those of back propagation-artificial neural network (BP-ANN), multiple linear regression (MLR) and partial least squares regression (PLSR) methods.</description><identifier>ISSN: 1293-2558</identifier><identifier>EISSN: 1873-3085</identifier><identifier>DOI: 10.1016/j.solidstatesciences.2005.10.011</identifier><language>eng</language><publisher>Paris: Elsevier Masson SAS</publisher><subject>Atomic parameters ; Band gap ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electron density of states and band structure of crystalline solids ; Electron states ; Exact sciences and technology ; Melting point ; Physics ; Semiconductor ; Semiconductor compounds ; Support vector regression</subject><ispartof>Solid state sciences, 2006-02, Vol.8 (2), p.129-136</ispartof><rights>2005 Elsevier SAS</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-18fff31fed2e41e99863a3f470ecbdc12dd4e992b99e23bbf843528b3bd5b7283</citedby><cites>FETCH-LOGICAL-c469t-18fff31fed2e41e99863a3f470ecbdc12dd4e992b99e23bbf843528b3bd5b7283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1293255805002761$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17491178$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Tianhong</creatorcontrib><creatorcontrib>Lu, Wencong</creatorcontrib><creatorcontrib>Bao, Xinhua</creatorcontrib><creatorcontrib>Chen, Nianyi</creatorcontrib><title>Using support vector regression for the prediction of the band gap and melting point of binary and ternary compound semiconductors</title><title>Solid state sciences</title><description>In this work, atomic parameters support vector regression (APSVR) was proposed to predict the band gap and melting point of III–V, II–VI binary and I–III–VI 2, II–IV–V 2 ternary compound semiconductors. The predicted results of APSVR were in good agreement with the experimental ones. The prediction accuracies of different models were discussed on the basis of their mean error functions ( MEF) in the leave-one-out cross-validation. It was found that the performance of APSVR model outperformed those of back propagation-artificial neural network (BP-ANN), multiple linear regression (MLR) and partial least squares regression (PLSR) methods.</description><subject>Atomic parameters</subject><subject>Band gap</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electron density of states and band structure of crystalline solids</subject><subject>Electron states</subject><subject>Exact sciences and technology</subject><subject>Melting point</subject><subject>Physics</subject><subject>Semiconductor</subject><subject>Semiconductor compounds</subject><subject>Support vector regression</subject><issn>1293-2558</issn><issn>1873-3085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNUctuFDEQHCEiEZL8w1xAXGbjxzxvoIjwUCQu5Gz50V68mrEHtycSV7489u5KHLjk1N3VpSp1dVV9oGRHCe1vDzsMszOYZALUDrwG3DFCurzeEUpfVZd0HHjDydi9zj2beMO6bnxTvUU8EEL6fmgvq7-P6Py-xm1dQ0z1E-gUYh1hHwHRBV_bPKZfUK8RjNOpQMEeESW9qfdyrUtdYE5FaA3Op8JQzsv457hLEI-9DssatgwgLE4Hb7ZihtfVhZUzws25XlWP959_3n1tHn58-Xb36aHRbT-lho7WWk4tGAYthWkaey65bQcCWhlNmTFtRpmaJmBcKTu2vGOj4sp0amAjv6ren3TXGH5vgEksDjXMs_QQNhRs6iknXSF-PBF1DIgRrFijW_IFghJRwhcH8X_4ooRfGDn8LPHu7CVRy9lG6bXDfzpDO1E6FKvvJx7kw58cRHGWMy7mVwgT3MtNnwHFW6s8</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Gu, Tianhong</creator><creator>Lu, Wencong</creator><creator>Bao, Xinhua</creator><creator>Chen, Nianyi</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20060201</creationdate><title>Using support vector regression for the prediction of the band gap and melting point of binary and ternary compound semiconductors</title><author>Gu, Tianhong ; Lu, Wencong ; Bao, Xinhua ; Chen, Nianyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-18fff31fed2e41e99863a3f470ecbdc12dd4e992b99e23bbf843528b3bd5b7283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Atomic parameters</topic><topic>Band gap</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electron density of states and band structure of crystalline solids</topic><topic>Electron states</topic><topic>Exact sciences and technology</topic><topic>Melting point</topic><topic>Physics</topic><topic>Semiconductor</topic><topic>Semiconductor compounds</topic><topic>Support vector regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Tianhong</creatorcontrib><creatorcontrib>Lu, Wencong</creatorcontrib><creatorcontrib>Bao, Xinhua</creatorcontrib><creatorcontrib>Chen, Nianyi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid state sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Tianhong</au><au>Lu, Wencong</au><au>Bao, Xinhua</au><au>Chen, Nianyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using support vector regression for the prediction of the band gap and melting point of binary and ternary compound semiconductors</atitle><jtitle>Solid state sciences</jtitle><date>2006-02-01</date><risdate>2006</risdate><volume>8</volume><issue>2</issue><spage>129</spage><epage>136</epage><pages>129-136</pages><issn>1293-2558</issn><eissn>1873-3085</eissn><abstract>In this work, atomic parameters support vector regression (APSVR) was proposed to predict the band gap and melting point of III–V, II–VI binary and I–III–VI 2, II–IV–V 2 ternary compound semiconductors. The predicted results of APSVR were in good agreement with the experimental ones. The prediction accuracies of different models were discussed on the basis of their mean error functions ( MEF) in the leave-one-out cross-validation. It was found that the performance of APSVR model outperformed those of back propagation-artificial neural network (BP-ANN), multiple linear regression (MLR) and partial least squares regression (PLSR) methods.</abstract><cop>Paris</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.solidstatesciences.2005.10.011</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1293-2558
ispartof Solid state sciences, 2006-02, Vol.8 (2), p.129-136
issn 1293-2558
1873-3085
language eng
recordid cdi_proquest_miscellaneous_29613058
source ScienceDirect Journals (5 years ago - present)
subjects Atomic parameters
Band gap
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Electron density of states and band structure of crystalline solids
Electron states
Exact sciences and technology
Melting point
Physics
Semiconductor
Semiconductor compounds
Support vector regression
title Using support vector regression for the prediction of the band gap and melting point of binary and ternary compound semiconductors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20support%20vector%20regression%20for%20the%20prediction%20of%20the%20band%20gap%20and%20melting%20point%20of%20binary%20and%20ternary%20compound%20semiconductors&rft.jtitle=Solid%20state%20sciences&rft.au=Gu,%20Tianhong&rft.date=2006-02-01&rft.volume=8&rft.issue=2&rft.spage=129&rft.epage=136&rft.pages=129-136&rft.issn=1293-2558&rft.eissn=1873-3085&rft_id=info:doi/10.1016/j.solidstatesciences.2005.10.011&rft_dat=%3Cproquest_cross%3E29613058%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29613058&rft_id=info:pmid/&rft_els_id=S1293255805002761&rfr_iscdi=true