Using support vector regression for the prediction of the band gap and melting point of binary and ternary compound semiconductors
In this work, atomic parameters support vector regression (APSVR) was proposed to predict the band gap and melting point of III–V, II–VI binary and I–III–VI 2, II–IV–V 2 ternary compound semiconductors. The predicted results of APSVR were in good agreement with the experimental ones. The prediction...
Gespeichert in:
Veröffentlicht in: | Solid state sciences 2006-02, Vol.8 (2), p.129-136 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 136 |
---|---|
container_issue | 2 |
container_start_page | 129 |
container_title | Solid state sciences |
container_volume | 8 |
creator | Gu, Tianhong Lu, Wencong Bao, Xinhua Chen, Nianyi |
description | In this work, atomic parameters support vector regression (APSVR) was proposed to predict the band gap and melting point of III–V, II–VI binary and I–III–VI
2, II–IV–V
2 ternary compound semiconductors. The predicted results of APSVR were in good agreement with the experimental ones. The prediction accuracies of different models were discussed on the basis of their mean error functions (
MEF) in the leave-one-out cross-validation. It was found that the performance of APSVR model outperformed those of back propagation-artificial neural network (BP-ANN), multiple linear regression (MLR) and partial least squares regression (PLSR) methods. |
doi_str_mv | 10.1016/j.solidstatesciences.2005.10.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29613058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1293255805002761</els_id><sourcerecordid>29613058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-18fff31fed2e41e99863a3f470ecbdc12dd4e992b99e23bbf843528b3bd5b7283</originalsourceid><addsrcrecordid>eNqNUctuFDEQHCEiEZL8w1xAXGbjxzxvoIjwUCQu5Gz50V68mrEHtycSV7489u5KHLjk1N3VpSp1dVV9oGRHCe1vDzsMszOYZALUDrwG3DFCurzeEUpfVZd0HHjDydi9zj2beMO6bnxTvUU8EEL6fmgvq7-P6Py-xm1dQ0z1E-gUYh1hHwHRBV_bPKZfUK8RjNOpQMEeESW9qfdyrUtdYE5FaA3Op8JQzsv457hLEI-9DssatgwgLE4Hb7ZihtfVhZUzws25XlWP959_3n1tHn58-Xb36aHRbT-lho7WWk4tGAYthWkaey65bQcCWhlNmTFtRpmaJmBcKTu2vGOj4sp0amAjv6ren3TXGH5vgEksDjXMs_QQNhRs6iknXSF-PBF1DIgRrFijW_IFghJRwhcH8X_4ooRfGDn8LPHu7CVRy9lG6bXDfzpDO1E6FKvvJx7kw58cRHGWMy7mVwgT3MtNnwHFW6s8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29613058</pqid></control><display><type>article</type><title>Using support vector regression for the prediction of the band gap and melting point of binary and ternary compound semiconductors</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gu, Tianhong ; Lu, Wencong ; Bao, Xinhua ; Chen, Nianyi</creator><creatorcontrib>Gu, Tianhong ; Lu, Wencong ; Bao, Xinhua ; Chen, Nianyi</creatorcontrib><description>In this work, atomic parameters support vector regression (APSVR) was proposed to predict the band gap and melting point of III–V, II–VI binary and I–III–VI
2, II–IV–V
2 ternary compound semiconductors. The predicted results of APSVR were in good agreement with the experimental ones. The prediction accuracies of different models were discussed on the basis of their mean error functions (
MEF) in the leave-one-out cross-validation. It was found that the performance of APSVR model outperformed those of back propagation-artificial neural network (BP-ANN), multiple linear regression (MLR) and partial least squares regression (PLSR) methods.</description><identifier>ISSN: 1293-2558</identifier><identifier>EISSN: 1873-3085</identifier><identifier>DOI: 10.1016/j.solidstatesciences.2005.10.011</identifier><language>eng</language><publisher>Paris: Elsevier Masson SAS</publisher><subject>Atomic parameters ; Band gap ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electron density of states and band structure of crystalline solids ; Electron states ; Exact sciences and technology ; Melting point ; Physics ; Semiconductor ; Semiconductor compounds ; Support vector regression</subject><ispartof>Solid state sciences, 2006-02, Vol.8 (2), p.129-136</ispartof><rights>2005 Elsevier SAS</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-18fff31fed2e41e99863a3f470ecbdc12dd4e992b99e23bbf843528b3bd5b7283</citedby><cites>FETCH-LOGICAL-c469t-18fff31fed2e41e99863a3f470ecbdc12dd4e992b99e23bbf843528b3bd5b7283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1293255805002761$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17491178$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Tianhong</creatorcontrib><creatorcontrib>Lu, Wencong</creatorcontrib><creatorcontrib>Bao, Xinhua</creatorcontrib><creatorcontrib>Chen, Nianyi</creatorcontrib><title>Using support vector regression for the prediction of the band gap and melting point of binary and ternary compound semiconductors</title><title>Solid state sciences</title><description>In this work, atomic parameters support vector regression (APSVR) was proposed to predict the band gap and melting point of III–V, II–VI binary and I–III–VI
2, II–IV–V
2 ternary compound semiconductors. The predicted results of APSVR were in good agreement with the experimental ones. The prediction accuracies of different models were discussed on the basis of their mean error functions (
MEF) in the leave-one-out cross-validation. It was found that the performance of APSVR model outperformed those of back propagation-artificial neural network (BP-ANN), multiple linear regression (MLR) and partial least squares regression (PLSR) methods.</description><subject>Atomic parameters</subject><subject>Band gap</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electron density of states and band structure of crystalline solids</subject><subject>Electron states</subject><subject>Exact sciences and technology</subject><subject>Melting point</subject><subject>Physics</subject><subject>Semiconductor</subject><subject>Semiconductor compounds</subject><subject>Support vector regression</subject><issn>1293-2558</issn><issn>1873-3085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNUctuFDEQHCEiEZL8w1xAXGbjxzxvoIjwUCQu5Gz50V68mrEHtycSV7489u5KHLjk1N3VpSp1dVV9oGRHCe1vDzsMszOYZALUDrwG3DFCurzeEUpfVZd0HHjDydi9zj2beMO6bnxTvUU8EEL6fmgvq7-P6Py-xm1dQ0z1E-gUYh1hHwHRBV_bPKZfUK8RjNOpQMEeESW9qfdyrUtdYE5FaA3Op8JQzsv457hLEI-9DssatgwgLE4Hb7ZihtfVhZUzws25XlWP959_3n1tHn58-Xb36aHRbT-lho7WWk4tGAYthWkaey65bQcCWhlNmTFtRpmaJmBcKTu2vGOj4sp0amAjv6ren3TXGH5vgEksDjXMs_QQNhRs6iknXSF-PBF1DIgRrFijW_IFghJRwhcH8X_4ooRfGDn8LPHu7CVRy9lG6bXDfzpDO1E6FKvvJx7kw58cRHGWMy7mVwgT3MtNnwHFW6s8</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Gu, Tianhong</creator><creator>Lu, Wencong</creator><creator>Bao, Xinhua</creator><creator>Chen, Nianyi</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20060201</creationdate><title>Using support vector regression for the prediction of the band gap and melting point of binary and ternary compound semiconductors</title><author>Gu, Tianhong ; Lu, Wencong ; Bao, Xinhua ; Chen, Nianyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-18fff31fed2e41e99863a3f470ecbdc12dd4e992b99e23bbf843528b3bd5b7283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Atomic parameters</topic><topic>Band gap</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electron density of states and band structure of crystalline solids</topic><topic>Electron states</topic><topic>Exact sciences and technology</topic><topic>Melting point</topic><topic>Physics</topic><topic>Semiconductor</topic><topic>Semiconductor compounds</topic><topic>Support vector regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Tianhong</creatorcontrib><creatorcontrib>Lu, Wencong</creatorcontrib><creatorcontrib>Bao, Xinhua</creatorcontrib><creatorcontrib>Chen, Nianyi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid state sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Tianhong</au><au>Lu, Wencong</au><au>Bao, Xinhua</au><au>Chen, Nianyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using support vector regression for the prediction of the band gap and melting point of binary and ternary compound semiconductors</atitle><jtitle>Solid state sciences</jtitle><date>2006-02-01</date><risdate>2006</risdate><volume>8</volume><issue>2</issue><spage>129</spage><epage>136</epage><pages>129-136</pages><issn>1293-2558</issn><eissn>1873-3085</eissn><abstract>In this work, atomic parameters support vector regression (APSVR) was proposed to predict the band gap and melting point of III–V, II–VI binary and I–III–VI
2, II–IV–V
2 ternary compound semiconductors. The predicted results of APSVR were in good agreement with the experimental ones. The prediction accuracies of different models were discussed on the basis of their mean error functions (
MEF) in the leave-one-out cross-validation. It was found that the performance of APSVR model outperformed those of back propagation-artificial neural network (BP-ANN), multiple linear regression (MLR) and partial least squares regression (PLSR) methods.</abstract><cop>Paris</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.solidstatesciences.2005.10.011</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1293-2558 |
ispartof | Solid state sciences, 2006-02, Vol.8 (2), p.129-136 |
issn | 1293-2558 1873-3085 |
language | eng |
recordid | cdi_proquest_miscellaneous_29613058 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Atomic parameters Band gap Condensed matter: electronic structure, electrical, magnetic, and optical properties Electron density of states and band structure of crystalline solids Electron states Exact sciences and technology Melting point Physics Semiconductor Semiconductor compounds Support vector regression |
title | Using support vector regression for the prediction of the band gap and melting point of binary and ternary compound semiconductors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20support%20vector%20regression%20for%20the%20prediction%20of%20the%20band%20gap%20and%20melting%20point%20of%20binary%20and%20ternary%20compound%20semiconductors&rft.jtitle=Solid%20state%20sciences&rft.au=Gu,%20Tianhong&rft.date=2006-02-01&rft.volume=8&rft.issue=2&rft.spage=129&rft.epage=136&rft.pages=129-136&rft.issn=1293-2558&rft.eissn=1873-3085&rft_id=info:doi/10.1016/j.solidstatesciences.2005.10.011&rft_dat=%3Cproquest_cross%3E29613058%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29613058&rft_id=info:pmid/&rft_els_id=S1293255805002761&rfr_iscdi=true |