A second-order accurate numerical approximation for the fractional diffusion equation

Fractional order diffusion equations are generalizations of classical diffusion equations, treating super-diffusive flow processes. In this paper, we examine a practical numerical method which is second-order accurate in time and in space to solve a class of initial-boundary value fractional diffusi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2006-03, Vol.213 (1), p.205-213
Hauptverfasser: Tadjeran, Charles, Meerschaert, Mark M., Scheffler, Hans-Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 213
container_issue 1
container_start_page 205
container_title Journal of computational physics
container_volume 213
creator Tadjeran, Charles
Meerschaert, Mark M.
Scheffler, Hans-Peter
description Fractional order diffusion equations are generalizations of classical diffusion equations, treating super-diffusive flow processes. In this paper, we examine a practical numerical method which is second-order accurate in time and in space to solve a class of initial-boundary value fractional diffusive equations with variable coefficients on a finite domain. An approach based on the classical Crank–Nicholson method combined with spatial extrapolation is used to obtain temporally and spatially second-order accurate numerical estimates. Stability, consistency, and (therefore) convergence of the method are examined. It is shown that the fractional Crank–Nicholson method based on the shifted Grünwald formula is unconditionally stable. A numerical example is presented and compared with the exact analytical solution for its order of convergence.
doi_str_mv 10.1016/j.jcp.2005.08.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29607382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999105003773</els_id><sourcerecordid>29607382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-9404dbf019f828f2b9a40f0d10134b0a47665989168872ef83da4c3e4873b1ba3</originalsourceid><addsrcrecordid>eNp9kDtPwzAQgC0EEqXwA9iygFgSzo6T2GKqKl5SJRY6W45zFo7apLUTBP8eh1ZiYzrp7rvXR8g1hYwCLe_brDW7jAEUGYgMQJyQGQUJKatoeUpmAIymUkp6Ti5CaCESBRczsl4kAU3fNWnvG_SJNmb0esCkG7fondGbRO92vv9yWz24vkts75PhAxPrtZkSEWictWOYirgff6lLcmb1JuDVMc7J-unxffmSrt6eX5eLVWpySYdUcuBNbYFKK5iwrJaag4UmfpTzGjSvyrKQQtJSiIqhFXmjucmRiyqvaa3zObk9zI0X7kcMg9q6YHCz0R32Y1BMllDlgkXw7l-QgmC0klCUEaUH1Pg-BI9W7Xx83n9HSE2uVauiazW5ViBUNBl7bo7jdYjKopvOuPDXWBW5AD6d8XDgMEr5dOhVMA47g43zaAbV9O6fLT-hMZPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082179056</pqid></control><display><type>article</type><title>A second-order accurate numerical approximation for the fractional diffusion equation</title><source>Elsevier ScienceDirect Journals</source><creator>Tadjeran, Charles ; Meerschaert, Mark M. ; Scheffler, Hans-Peter</creator><creatorcontrib>Tadjeran, Charles ; Meerschaert, Mark M. ; Scheffler, Hans-Peter</creatorcontrib><description>Fractional order diffusion equations are generalizations of classical diffusion equations, treating super-diffusive flow processes. In this paper, we examine a practical numerical method which is second-order accurate in time and in space to solve a class of initial-boundary value fractional diffusive equations with variable coefficients on a finite domain. An approach based on the classical Crank–Nicholson method combined with spatial extrapolation is used to obtain temporally and spatially second-order accurate numerical estimates. Stability, consistency, and (therefore) convergence of the method are examined. It is shown that the fractional Crank–Nicholson method based on the shifted Grünwald formula is unconditionally stable. A numerical example is presented and compared with the exact analytical solution for its order of convergence.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2005.08.008</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Approximation ; Computational techniques ; Consistency ; Convergence ; Crank-Nicholson method ; Diffusion ; Exact sciences and technology ; Extrapolation ; Fractional partial differential equation ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Numerical algorithm for superdiffusion ; Numerical fractional PDE ; Physics ; Second-order accurate finite difference approximation ; Stability analysis</subject><ispartof>Journal of computational physics, 2006-03, Vol.213 (1), p.205-213</ispartof><rights>2005 Elsevier Inc.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-9404dbf019f828f2b9a40f0d10134b0a47665989168872ef83da4c3e4873b1ba3</citedby><cites>FETCH-LOGICAL-c391t-9404dbf019f828f2b9a40f0d10134b0a47665989168872ef83da4c3e4873b1ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999105003773$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17538042$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tadjeran, Charles</creatorcontrib><creatorcontrib>Meerschaert, Mark M.</creatorcontrib><creatorcontrib>Scheffler, Hans-Peter</creatorcontrib><title>A second-order accurate numerical approximation for the fractional diffusion equation</title><title>Journal of computational physics</title><description>Fractional order diffusion equations are generalizations of classical diffusion equations, treating super-diffusive flow processes. In this paper, we examine a practical numerical method which is second-order accurate in time and in space to solve a class of initial-boundary value fractional diffusive equations with variable coefficients on a finite domain. An approach based on the classical Crank–Nicholson method combined with spatial extrapolation is used to obtain temporally and spatially second-order accurate numerical estimates. Stability, consistency, and (therefore) convergence of the method are examined. It is shown that the fractional Crank–Nicholson method based on the shifted Grünwald formula is unconditionally stable. A numerical example is presented and compared with the exact analytical solution for its order of convergence.</description><subject>Approximation</subject><subject>Computational techniques</subject><subject>Consistency</subject><subject>Convergence</subject><subject>Crank-Nicholson method</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>Extrapolation</subject><subject>Fractional partial differential equation</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Numerical algorithm for superdiffusion</subject><subject>Numerical fractional PDE</subject><subject>Physics</subject><subject>Second-order accurate finite difference approximation</subject><subject>Stability analysis</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAQgC0EEqXwA9iygFgSzo6T2GKqKl5SJRY6W45zFo7apLUTBP8eh1ZiYzrp7rvXR8g1hYwCLe_brDW7jAEUGYgMQJyQGQUJKatoeUpmAIymUkp6Ti5CaCESBRczsl4kAU3fNWnvG_SJNmb0esCkG7fondGbRO92vv9yWz24vkts75PhAxPrtZkSEWictWOYirgff6lLcmb1JuDVMc7J-unxffmSrt6eX5eLVWpySYdUcuBNbYFKK5iwrJaag4UmfpTzGjSvyrKQQtJSiIqhFXmjucmRiyqvaa3zObk9zI0X7kcMg9q6YHCz0R32Y1BMllDlgkXw7l-QgmC0klCUEaUH1Pg-BI9W7Xx83n9HSE2uVauiazW5ViBUNBl7bo7jdYjKopvOuPDXWBW5AD6d8XDgMEr5dOhVMA47g43zaAbV9O6fLT-hMZPQ</recordid><startdate>20060320</startdate><enddate>20060320</enddate><creator>Tadjeran, Charles</creator><creator>Meerschaert, Mark M.</creator><creator>Scheffler, Hans-Peter</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060320</creationdate><title>A second-order accurate numerical approximation for the fractional diffusion equation</title><author>Tadjeran, Charles ; Meerschaert, Mark M. ; Scheffler, Hans-Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-9404dbf019f828f2b9a40f0d10134b0a47665989168872ef83da4c3e4873b1ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Approximation</topic><topic>Computational techniques</topic><topic>Consistency</topic><topic>Convergence</topic><topic>Crank-Nicholson method</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>Extrapolation</topic><topic>Fractional partial differential equation</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Numerical algorithm for superdiffusion</topic><topic>Numerical fractional PDE</topic><topic>Physics</topic><topic>Second-order accurate finite difference approximation</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tadjeran, Charles</creatorcontrib><creatorcontrib>Meerschaert, Mark M.</creatorcontrib><creatorcontrib>Scheffler, Hans-Peter</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tadjeran, Charles</au><au>Meerschaert, Mark M.</au><au>Scheffler, Hans-Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A second-order accurate numerical approximation for the fractional diffusion equation</atitle><jtitle>Journal of computational physics</jtitle><date>2006-03-20</date><risdate>2006</risdate><volume>213</volume><issue>1</issue><spage>205</spage><epage>213</epage><pages>205-213</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Fractional order diffusion equations are generalizations of classical diffusion equations, treating super-diffusive flow processes. In this paper, we examine a practical numerical method which is second-order accurate in time and in space to solve a class of initial-boundary value fractional diffusive equations with variable coefficients on a finite domain. An approach based on the classical Crank–Nicholson method combined with spatial extrapolation is used to obtain temporally and spatially second-order accurate numerical estimates. Stability, consistency, and (therefore) convergence of the method are examined. It is shown that the fractional Crank–Nicholson method based on the shifted Grünwald formula is unconditionally stable. A numerical example is presented and compared with the exact analytical solution for its order of convergence.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2005.08.008</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2006-03, Vol.213 (1), p.205-213
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_29607382
source Elsevier ScienceDirect Journals
subjects Approximation
Computational techniques
Consistency
Convergence
Crank-Nicholson method
Diffusion
Exact sciences and technology
Extrapolation
Fractional partial differential equation
Mathematical analysis
Mathematical methods in physics
Mathematical models
Numerical algorithm for superdiffusion
Numerical fractional PDE
Physics
Second-order accurate finite difference approximation
Stability analysis
title A second-order accurate numerical approximation for the fractional diffusion equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20second-order%20accurate%20numerical%20approximation%20for%20the%20fractional%20diffusion%20equation&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Tadjeran,%20Charles&rft.date=2006-03-20&rft.volume=213&rft.issue=1&rft.spage=205&rft.epage=213&rft.pages=205-213&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2005.08.008&rft_dat=%3Cproquest_cross%3E29607382%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082179056&rft_id=info:pmid/&rft_els_id=S0021999105003773&rfr_iscdi=true