Computing zeta functions of nondegenerate curves

We present a p-adic algorithm to compute the zeta function of a nondegenerate curve over a finite field using Monsky-Washnitzer cohomology. The paper vastly generalizes previous work since in practice all known cases, for example, hyperelliptic, superelliptic, and Cab curves, can be transformed to f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Mathematics Research Papers 2006-01, Vol.2006 (18), p.1-57
Hauptverfasser: Castryck, W., Denef, J., Vercauteren, F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue 18
container_start_page 1
container_title International Mathematics Research Papers
container_volume 2006
creator Castryck, W.
Denef, J.
Vercauteren, F.
description We present a p-adic algorithm to compute the zeta function of a nondegenerate curve over a finite field using Monsky-Washnitzer cohomology. The paper vastly generalizes previous work since in practice all known cases, for example, hyperelliptic, superelliptic, and Cab curves, can be transformed to fit the nondegenerate case. For curves with a fixed Newton polytope, the property of being nondegenerate is generic, so that the algorithm works for almost all curves with given Newton polytope. For a genus g curve over Fpn, the expected running time is Õ(n3g6 + n2g6.5), whereas the space complexity amounts to Õ(n3g4), assuming p is fixed.
doi_str_mv 10.1155/IMRP/2006/72017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29600942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1155/IMRP/2006/72017</oup_id><sourcerecordid>29600942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-1910b27b8b27c51a84770ad4500a24c66c6fe13c54a1687023755ce6001dc1583</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK6evfbkQaidSZumPcrix8KKInoO2XS6VLpJTVpBf72t3buXmWF43mF4GLtEuEEUIlk_vb4kHCBPJAeUR2yBeSFjxFIeH-Z03J-ysxA-ALgsARcMVm7fDX1jd9EP9TqqB2v6xtkQuTqyzla0I0te9xSZwX9ROGcntW4DXRz6kr3f372tHuPN88N6dbuJTZoVfYwlwpbLbTEWI1AXmZSgq0wAaJ6ZPDd5TZgakenpNeCpFMJQDoCVQVGkS3Y13-28-xwo9GrfBENtqy25IShejmyZ8RFMZtB4F4KnWnW-2Wv_rRDUZEZNZtRkRv2ZGRPXc8IN3b_wL9uiYcU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29600942</pqid></control><display><type>article</type><title>Computing zeta functions of nondegenerate curves</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Castryck, W. ; Denef, J. ; Vercauteren, F.</creator><creatorcontrib>Castryck, W. ; Denef, J. ; Vercauteren, F.</creatorcontrib><description>We present a p-adic algorithm to compute the zeta function of a nondegenerate curve over a finite field using Monsky-Washnitzer cohomology. The paper vastly generalizes previous work since in practice all known cases, for example, hyperelliptic, superelliptic, and Cab curves, can be transformed to fit the nondegenerate case. For curves with a fixed Newton polytope, the property of being nondegenerate is generic, so that the algorithm works for almost all curves with given Newton polytope. For a genus g curve over Fpn, the expected running time is Õ(n3g6 + n2g6.5), whereas the space complexity amounts to Õ(n3g4), assuming p is fixed.</description><identifier>ISSN: 1687-3017</identifier><identifier>EISSN: 1687-1197</identifier><identifier>EISSN: 1687-3009</identifier><identifier>DOI: 10.1155/IMRP/2006/72017</identifier><language>eng</language><publisher>Hindawi Publishing Corporation</publisher><ispartof>International Mathematics Research Papers, 2006-01, Vol.2006 (18), p.1-57</ispartof><rights>Copyright © 2006 Hindawi Publishing Corporation. All rights reserved. 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-1910b27b8b27c51a84770ad4500a24c66c6fe13c54a1687023755ce6001dc1583</citedby><cites>FETCH-LOGICAL-c348t-1910b27b8b27c51a84770ad4500a24c66c6fe13c54a1687023755ce6001dc1583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Castryck, W.</creatorcontrib><creatorcontrib>Denef, J.</creatorcontrib><creatorcontrib>Vercauteren, F.</creatorcontrib><title>Computing zeta functions of nondegenerate curves</title><title>International Mathematics Research Papers</title><description>We present a p-adic algorithm to compute the zeta function of a nondegenerate curve over a finite field using Monsky-Washnitzer cohomology. The paper vastly generalizes previous work since in practice all known cases, for example, hyperelliptic, superelliptic, and Cab curves, can be transformed to fit the nondegenerate case. For curves with a fixed Newton polytope, the property of being nondegenerate is generic, so that the algorithm works for almost all curves with given Newton polytope. For a genus g curve over Fpn, the expected running time is Õ(n3g6 + n2g6.5), whereas the space complexity amounts to Õ(n3g4), assuming p is fixed.</description><issn>1687-3017</issn><issn>1687-1197</issn><issn>1687-3009</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK6evfbkQaidSZumPcrix8KKInoO2XS6VLpJTVpBf72t3buXmWF43mF4GLtEuEEUIlk_vb4kHCBPJAeUR2yBeSFjxFIeH-Z03J-ysxA-ALgsARcMVm7fDX1jd9EP9TqqB2v6xtkQuTqyzla0I0te9xSZwX9ROGcntW4DXRz6kr3f372tHuPN88N6dbuJTZoVfYwlwpbLbTEWI1AXmZSgq0wAaJ6ZPDd5TZgakenpNeCpFMJQDoCVQVGkS3Y13-28-xwo9GrfBENtqy25IShejmyZ8RFMZtB4F4KnWnW-2Wv_rRDUZEZNZtRkRv2ZGRPXc8IN3b_wL9uiYcU</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Castryck, W.</creator><creator>Denef, J.</creator><creator>Vercauteren, F.</creator><general>Hindawi Publishing Corporation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20060101</creationdate><title>Computing zeta functions of nondegenerate curves</title><author>Castryck, W. ; Denef, J. ; Vercauteren, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-1910b27b8b27c51a84770ad4500a24c66c6fe13c54a1687023755ce6001dc1583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castryck, W.</creatorcontrib><creatorcontrib>Denef, J.</creatorcontrib><creatorcontrib>Vercauteren, F.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International Mathematics Research Papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castryck, W.</au><au>Denef, J.</au><au>Vercauteren, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing zeta functions of nondegenerate curves</atitle><jtitle>International Mathematics Research Papers</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>2006</volume><issue>18</issue><spage>1</spage><epage>57</epage><pages>1-57</pages><issn>1687-3017</issn><eissn>1687-1197</eissn><eissn>1687-3009</eissn><abstract>We present a p-adic algorithm to compute the zeta function of a nondegenerate curve over a finite field using Monsky-Washnitzer cohomology. The paper vastly generalizes previous work since in practice all known cases, for example, hyperelliptic, superelliptic, and Cab curves, can be transformed to fit the nondegenerate case. For curves with a fixed Newton polytope, the property of being nondegenerate is generic, so that the algorithm works for almost all curves with given Newton polytope. For a genus g curve over Fpn, the expected running time is Õ(n3g6 + n2g6.5), whereas the space complexity amounts to Õ(n3g4), assuming p is fixed.</abstract><pub>Hindawi Publishing Corporation</pub><doi>10.1155/IMRP/2006/72017</doi><tpages>57</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-3017
ispartof International Mathematics Research Papers, 2006-01, Vol.2006 (18), p.1-57
issn 1687-3017
1687-1197
1687-3009
language eng
recordid cdi_proquest_miscellaneous_29600942
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
title Computing zeta functions of nondegenerate curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20zeta%20functions%20of%20nondegenerate%20curves&rft.jtitle=International%20Mathematics%20Research%20Papers&rft.au=Castryck,%20W.&rft.date=2006-01-01&rft.volume=2006&rft.issue=18&rft.spage=1&rft.epage=57&rft.pages=1-57&rft.issn=1687-3017&rft.eissn=1687-1197&rft_id=info:doi/10.1155/IMRP/2006/72017&rft_dat=%3Cproquest_cross%3E29600942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29600942&rft_id=info:pmid/&rft_oup_id=10.1155/IMRP/2006/72017&rfr_iscdi=true