Computing zeta functions of nondegenerate curves
We present a p-adic algorithm to compute the zeta function of a nondegenerate curve over a finite field using Monsky-Washnitzer cohomology. The paper vastly generalizes previous work since in practice all known cases, for example, hyperelliptic, superelliptic, and Cab curves, can be transformed to f...
Gespeichert in:
Veröffentlicht in: | International Mathematics Research Papers 2006-01, Vol.2006 (18), p.1-57 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | 18 |
container_start_page | 1 |
container_title | International Mathematics Research Papers |
container_volume | 2006 |
creator | Castryck, W. Denef, J. Vercauteren, F. |
description | We present a p-adic algorithm to compute the zeta function of a nondegenerate curve over a finite field using Monsky-Washnitzer cohomology. The paper vastly generalizes previous work since in practice all known cases, for example, hyperelliptic, superelliptic, and Cab curves, can be transformed to fit the nondegenerate case. For curves with a fixed Newton polytope, the property of being nondegenerate is generic, so that the algorithm works for almost all curves with given Newton polytope. For a genus g curve over Fpn, the expected running time is Õ(n3g6 + n2g6.5), whereas the space complexity amounts to Õ(n3g4), assuming p is fixed. |
doi_str_mv | 10.1155/IMRP/2006/72017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29600942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1155/IMRP/2006/72017</oup_id><sourcerecordid>29600942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-1910b27b8b27c51a84770ad4500a24c66c6fe13c54a1687023755ce6001dc1583</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK6evfbkQaidSZumPcrix8KKInoO2XS6VLpJTVpBf72t3buXmWF43mF4GLtEuEEUIlk_vb4kHCBPJAeUR2yBeSFjxFIeH-Z03J-ysxA-ALgsARcMVm7fDX1jd9EP9TqqB2v6xtkQuTqyzla0I0te9xSZwX9ROGcntW4DXRz6kr3f372tHuPN88N6dbuJTZoVfYwlwpbLbTEWI1AXmZSgq0wAaJ6ZPDd5TZgakenpNeCpFMJQDoCVQVGkS3Y13-28-xwo9GrfBENtqy25IShejmyZ8RFMZtB4F4KnWnW-2Wv_rRDUZEZNZtRkRv2ZGRPXc8IN3b_wL9uiYcU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29600942</pqid></control><display><type>article</type><title>Computing zeta functions of nondegenerate curves</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Castryck, W. ; Denef, J. ; Vercauteren, F.</creator><creatorcontrib>Castryck, W. ; Denef, J. ; Vercauteren, F.</creatorcontrib><description>We present a p-adic algorithm to compute the zeta function of a nondegenerate curve over a finite field using Monsky-Washnitzer cohomology. The paper vastly generalizes previous work since in practice all known cases, for example, hyperelliptic, superelliptic, and Cab curves, can be transformed to fit the nondegenerate case. For curves with a fixed Newton polytope, the property of being nondegenerate is generic, so that the algorithm works for almost all curves with given Newton polytope. For a genus g curve over Fpn, the expected running time is Õ(n3g6 + n2g6.5), whereas the space complexity amounts to Õ(n3g4), assuming p is fixed.</description><identifier>ISSN: 1687-3017</identifier><identifier>EISSN: 1687-1197</identifier><identifier>EISSN: 1687-3009</identifier><identifier>DOI: 10.1155/IMRP/2006/72017</identifier><language>eng</language><publisher>Hindawi Publishing Corporation</publisher><ispartof>International Mathematics Research Papers, 2006-01, Vol.2006 (18), p.1-57</ispartof><rights>Copyright © 2006 Hindawi Publishing Corporation. All rights reserved. 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-1910b27b8b27c51a84770ad4500a24c66c6fe13c54a1687023755ce6001dc1583</citedby><cites>FETCH-LOGICAL-c348t-1910b27b8b27c51a84770ad4500a24c66c6fe13c54a1687023755ce6001dc1583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Castryck, W.</creatorcontrib><creatorcontrib>Denef, J.</creatorcontrib><creatorcontrib>Vercauteren, F.</creatorcontrib><title>Computing zeta functions of nondegenerate curves</title><title>International Mathematics Research Papers</title><description>We present a p-adic algorithm to compute the zeta function of a nondegenerate curve over a finite field using Monsky-Washnitzer cohomology. The paper vastly generalizes previous work since in practice all known cases, for example, hyperelliptic, superelliptic, and Cab curves, can be transformed to fit the nondegenerate case. For curves with a fixed Newton polytope, the property of being nondegenerate is generic, so that the algorithm works for almost all curves with given Newton polytope. For a genus g curve over Fpn, the expected running time is Õ(n3g6 + n2g6.5), whereas the space complexity amounts to Õ(n3g4), assuming p is fixed.</description><issn>1687-3017</issn><issn>1687-1197</issn><issn>1687-3009</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK6evfbkQaidSZumPcrix8KKInoO2XS6VLpJTVpBf72t3buXmWF43mF4GLtEuEEUIlk_vb4kHCBPJAeUR2yBeSFjxFIeH-Z03J-ysxA-ALgsARcMVm7fDX1jd9EP9TqqB2v6xtkQuTqyzla0I0te9xSZwX9ROGcntW4DXRz6kr3f372tHuPN88N6dbuJTZoVfYwlwpbLbTEWI1AXmZSgq0wAaJ6ZPDd5TZgakenpNeCpFMJQDoCVQVGkS3Y13-28-xwo9GrfBENtqy25IShejmyZ8RFMZtB4F4KnWnW-2Wv_rRDUZEZNZtRkRv2ZGRPXc8IN3b_wL9uiYcU</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Castryck, W.</creator><creator>Denef, J.</creator><creator>Vercauteren, F.</creator><general>Hindawi Publishing Corporation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20060101</creationdate><title>Computing zeta functions of nondegenerate curves</title><author>Castryck, W. ; Denef, J. ; Vercauteren, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-1910b27b8b27c51a84770ad4500a24c66c6fe13c54a1687023755ce6001dc1583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castryck, W.</creatorcontrib><creatorcontrib>Denef, J.</creatorcontrib><creatorcontrib>Vercauteren, F.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International Mathematics Research Papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castryck, W.</au><au>Denef, J.</au><au>Vercauteren, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing zeta functions of nondegenerate curves</atitle><jtitle>International Mathematics Research Papers</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>2006</volume><issue>18</issue><spage>1</spage><epage>57</epage><pages>1-57</pages><issn>1687-3017</issn><eissn>1687-1197</eissn><eissn>1687-3009</eissn><abstract>We present a p-adic algorithm to compute the zeta function of a nondegenerate curve over a finite field using Monsky-Washnitzer cohomology. The paper vastly generalizes previous work since in practice all known cases, for example, hyperelliptic, superelliptic, and Cab curves, can be transformed to fit the nondegenerate case. For curves with a fixed Newton polytope, the property of being nondegenerate is generic, so that the algorithm works for almost all curves with given Newton polytope. For a genus g curve over Fpn, the expected running time is Õ(n3g6 + n2g6.5), whereas the space complexity amounts to Õ(n3g4), assuming p is fixed.</abstract><pub>Hindawi Publishing Corporation</pub><doi>10.1155/IMRP/2006/72017</doi><tpages>57</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-3017 |
ispartof | International Mathematics Research Papers, 2006-01, Vol.2006 (18), p.1-57 |
issn | 1687-3017 1687-1197 1687-3009 |
language | eng |
recordid | cdi_proquest_miscellaneous_29600942 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
title | Computing zeta functions of nondegenerate curves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20zeta%20functions%20of%20nondegenerate%20curves&rft.jtitle=International%20Mathematics%20Research%20Papers&rft.au=Castryck,%20W.&rft.date=2006-01-01&rft.volume=2006&rft.issue=18&rft.spage=1&rft.epage=57&rft.pages=1-57&rft.issn=1687-3017&rft.eissn=1687-1197&rft_id=info:doi/10.1155/IMRP/2006/72017&rft_dat=%3Cproquest_cross%3E29600942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29600942&rft_id=info:pmid/&rft_oup_id=10.1155/IMRP/2006/72017&rfr_iscdi=true |