Simulation of springback: Through-thickness integration

The number of through-thickness integration points ( N IP) required for accurate springback analysis following sheet forming simulation using shell elements is a subject of confusion and controversy. Li and Wagoner recommended, in 1999, based on a finite element analysis (FEA) of draw-bending spring...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of plasticity 2007-03, Vol.23 (3), p.345-360
Hauptverfasser: Wagoner, R.H., Li, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 360
container_issue 3
container_start_page 345
container_title International journal of plasticity
container_volume 23
creator Wagoner, R.H.
Li, M.
description The number of through-thickness integration points ( N IP) required for accurate springback analysis following sheet forming simulation using shell elements is a subject of confusion and controversy. Li and Wagoner recommended, in 1999, based on a finite element analysis (FEA) of draw-bending springback, the use of 25 integration points (IP), with up to 51 IP required to ensure accuracies of 1%. Several researchers have since reported that N IP between 5 and 11 are adequate, or even that 7 or 9 IP are optimal, with reduced accuracy for more IP. These apparent contradictions are addressed with an analytical model of elasto-plastic bending under tension, followed by elastic springback. The fractional error in the evaluated bending moment, which is equal to the fractional error in springback, was determined by comparing three numerical integration schemes, with various N IP, to the closed-form result. The results illustrate the oscillatory nature of numerical integration error with small parametric changes, such that fortuitous agreement can be obtained in isolated simulations where the number of integration points is inadequate. The concept of an assured error limit is introduced as well as a maximum error limit (for a range of generally unknown sheet tensions). The assured error limit varies with the integration scheme, N IP, bending ratio ( R/ t), and sheet tension. Guidelines for the number of integration points required for given error tolerances are reported to allow practitioners to choose numerical parameters appropriately.
doi_str_mv 10.1016/j.ijplas.2006.04.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29596411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0749641906001100</els_id><sourcerecordid>29596411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-fa642b8acf0d9a17abc43d7aaa9e4a22a9bd2b464602d40f8ca51f4802615de63</originalsourceid><addsrcrecordid>eNp90M9LwzAUwPEgCs7pf-ChF8VLa5KmaeJBkOEvGHhwnsNrmmzpunYmreB_b-YG3jzl8nl5vC9ClwRnBBN-22Su2bYQMooxzzDLMC6O0ISIUqaUFOwYTXDJZMoZkafoLIQGRyFyMkHlu9uMLQyu75LeJmHrXbesQK_vksXK9-NylQ4rp9edCSFx3WCW_hefoxMLbTAXh3eKPp4eF7OXdP72_Dp7mKeacT6kFjijlQBtcS2BlFBpltclAEjDgFKQVU0rxhnHtGbYCg0FsUxgyklRG55P0fX-363vP0cTBrVxQZu2hc70Y1BUFjKeRSK8-RcSLCiRhJIyUran2vcheGNVvHoD_jsitQuqGrUPqnZBFWYq5opjV4cNEDS01kOnXfibFYzmgsvo7vfOxC5fzngVtDOdNrXzRg-q7t3_i34ASoeNsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082191217</pqid></control><display><type>article</type><title>Simulation of springback: Through-thickness integration</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wagoner, R.H. ; Li, M.</creator><creatorcontrib>Wagoner, R.H. ; Li, M.</creatorcontrib><description>The number of through-thickness integration points ( N IP) required for accurate springback analysis following sheet forming simulation using shell elements is a subject of confusion and controversy. Li and Wagoner recommended, in 1999, based on a finite element analysis (FEA) of draw-bending springback, the use of 25 integration points (IP), with up to 51 IP required to ensure accuracies of 1%. Several researchers have since reported that N IP between 5 and 11 are adequate, or even that 7 or 9 IP are optimal, with reduced accuracy for more IP. These apparent contradictions are addressed with an analytical model of elasto-plastic bending under tension, followed by elastic springback. The fractional error in the evaluated bending moment, which is equal to the fractional error in springback, was determined by comparing three numerical integration schemes, with various N IP, to the closed-form result. The results illustrate the oscillatory nature of numerical integration error with small parametric changes, such that fortuitous agreement can be obtained in isolated simulations where the number of integration points is inadequate. The concept of an assured error limit is introduced as well as a maximum error limit (for a range of generally unknown sheet tensions). The assured error limit varies with the integration scheme, N IP, bending ratio ( R/ t), and sheet tension. Guidelines for the number of integration points required for given error tolerances are reported to allow practitioners to choose numerical parameters appropriately.</description><identifier>ISSN: 0749-6419</identifier><identifier>EISSN: 1879-2154</identifier><identifier>DOI: 10.1016/j.ijplas.2006.04.005</identifier><identifier>CODEN: IJPLER</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Accuracy ; Applied sciences ; Errors ; Exact sciences and technology ; Forming ; Fundamental areas of phenomenology (including applications) ; Inelasticity (thermoplasticity, viscoplasticity...) ; Integration ; Integration points ; IP (Internet Protocol) ; Mathematical analysis ; Mathematical models ; Metals. Metallurgy ; Numerical integration ; Other forming methods ; Permissible error ; Physics ; Production techniques ; Shell elements ; Solid mechanics ; Spring-back ; Springback ; Structural and continuum mechanics</subject><ispartof>International journal of plasticity, 2007-03, Vol.23 (3), p.345-360</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-fa642b8acf0d9a17abc43d7aaa9e4a22a9bd2b464602d40f8ca51f4802615de63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijplas.2006.04.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18423869$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wagoner, R.H.</creatorcontrib><creatorcontrib>Li, M.</creatorcontrib><title>Simulation of springback: Through-thickness integration</title><title>International journal of plasticity</title><description>The number of through-thickness integration points ( N IP) required for accurate springback analysis following sheet forming simulation using shell elements is a subject of confusion and controversy. Li and Wagoner recommended, in 1999, based on a finite element analysis (FEA) of draw-bending springback, the use of 25 integration points (IP), with up to 51 IP required to ensure accuracies of 1%. Several researchers have since reported that N IP between 5 and 11 are adequate, or even that 7 or 9 IP are optimal, with reduced accuracy for more IP. These apparent contradictions are addressed with an analytical model of elasto-plastic bending under tension, followed by elastic springback. The fractional error in the evaluated bending moment, which is equal to the fractional error in springback, was determined by comparing three numerical integration schemes, with various N IP, to the closed-form result. The results illustrate the oscillatory nature of numerical integration error with small parametric changes, such that fortuitous agreement can be obtained in isolated simulations where the number of integration points is inadequate. The concept of an assured error limit is introduced as well as a maximum error limit (for a range of generally unknown sheet tensions). The assured error limit varies with the integration scheme, N IP, bending ratio ( R/ t), and sheet tension. Guidelines for the number of integration points required for given error tolerances are reported to allow practitioners to choose numerical parameters appropriately.</description><subject>Accuracy</subject><subject>Applied sciences</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Forming</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Integration</subject><subject>Integration points</subject><subject>IP (Internet Protocol)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Metals. Metallurgy</subject><subject>Numerical integration</subject><subject>Other forming methods</subject><subject>Permissible error</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Shell elements</subject><subject>Solid mechanics</subject><subject>Spring-back</subject><subject>Springback</subject><subject>Structural and continuum mechanics</subject><issn>0749-6419</issn><issn>1879-2154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUwPEgCs7pf-ChF8VLa5KmaeJBkOEvGHhwnsNrmmzpunYmreB_b-YG3jzl8nl5vC9ClwRnBBN-22Su2bYQMooxzzDLMC6O0ISIUqaUFOwYTXDJZMoZkafoLIQGRyFyMkHlu9uMLQyu75LeJmHrXbesQK_vksXK9-NylQ4rp9edCSFx3WCW_hefoxMLbTAXh3eKPp4eF7OXdP72_Dp7mKeacT6kFjijlQBtcS2BlFBpltclAEjDgFKQVU0rxhnHtGbYCg0FsUxgyklRG55P0fX-363vP0cTBrVxQZu2hc70Y1BUFjKeRSK8-RcSLCiRhJIyUran2vcheGNVvHoD_jsitQuqGrUPqnZBFWYq5opjV4cNEDS01kOnXfibFYzmgsvo7vfOxC5fzngVtDOdNrXzRg-q7t3_i34ASoeNsg</recordid><startdate>200703</startdate><enddate>200703</enddate><creator>Wagoner, R.H.</creator><creator>Li, M.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>200703</creationdate><title>Simulation of springback: Through-thickness integration</title><author>Wagoner, R.H. ; Li, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-fa642b8acf0d9a17abc43d7aaa9e4a22a9bd2b464602d40f8ca51f4802615de63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Accuracy</topic><topic>Applied sciences</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Forming</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Integration</topic><topic>Integration points</topic><topic>IP (Internet Protocol)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Metals. Metallurgy</topic><topic>Numerical integration</topic><topic>Other forming methods</topic><topic>Permissible error</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Shell elements</topic><topic>Solid mechanics</topic><topic>Spring-back</topic><topic>Springback</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagoner, R.H.</creatorcontrib><creatorcontrib>Li, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of plasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagoner, R.H.</au><au>Li, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of springback: Through-thickness integration</atitle><jtitle>International journal of plasticity</jtitle><date>2007-03</date><risdate>2007</risdate><volume>23</volume><issue>3</issue><spage>345</spage><epage>360</epage><pages>345-360</pages><issn>0749-6419</issn><eissn>1879-2154</eissn><coden>IJPLER</coden><abstract>The number of through-thickness integration points ( N IP) required for accurate springback analysis following sheet forming simulation using shell elements is a subject of confusion and controversy. Li and Wagoner recommended, in 1999, based on a finite element analysis (FEA) of draw-bending springback, the use of 25 integration points (IP), with up to 51 IP required to ensure accuracies of 1%. Several researchers have since reported that N IP between 5 and 11 are adequate, or even that 7 or 9 IP are optimal, with reduced accuracy for more IP. These apparent contradictions are addressed with an analytical model of elasto-plastic bending under tension, followed by elastic springback. The fractional error in the evaluated bending moment, which is equal to the fractional error in springback, was determined by comparing three numerical integration schemes, with various N IP, to the closed-form result. The results illustrate the oscillatory nature of numerical integration error with small parametric changes, such that fortuitous agreement can be obtained in isolated simulations where the number of integration points is inadequate. The concept of an assured error limit is introduced as well as a maximum error limit (for a range of generally unknown sheet tensions). The assured error limit varies with the integration scheme, N IP, bending ratio ( R/ t), and sheet tension. Guidelines for the number of integration points required for given error tolerances are reported to allow practitioners to choose numerical parameters appropriately.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijplas.2006.04.005</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0749-6419
ispartof International journal of plasticity, 2007-03, Vol.23 (3), p.345-360
issn 0749-6419
1879-2154
language eng
recordid cdi_proquest_miscellaneous_29596411
source Access via ScienceDirect (Elsevier)
subjects Accuracy
Applied sciences
Errors
Exact sciences and technology
Forming
Fundamental areas of phenomenology (including applications)
Inelasticity (thermoplasticity, viscoplasticity...)
Integration
Integration points
IP (Internet Protocol)
Mathematical analysis
Mathematical models
Metals. Metallurgy
Numerical integration
Other forming methods
Permissible error
Physics
Production techniques
Shell elements
Solid mechanics
Spring-back
Springback
Structural and continuum mechanics
title Simulation of springback: Through-thickness integration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20springback:%20Through-thickness%20integration&rft.jtitle=International%20journal%20of%20plasticity&rft.au=Wagoner,%20R.H.&rft.date=2007-03&rft.volume=23&rft.issue=3&rft.spage=345&rft.epage=360&rft.pages=345-360&rft.issn=0749-6419&rft.eissn=1879-2154&rft.coden=IJPLER&rft_id=info:doi/10.1016/j.ijplas.2006.04.005&rft_dat=%3Cproquest_cross%3E29596411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082191217&rft_id=info:pmid/&rft_els_id=S0749641906001100&rfr_iscdi=true