Observation of Ultrahigh Photoconductivity in DNA‐MoS2 Nano‐Biocomposite
A nano‐biocomposite film with ultrahigh photoconductivity remains elusive and critical for bio‐optoelectronic applications. A uniform, well‐connected, high‐concentration nanomaterial network in the biological matrix remains challenging to achieve high photoconductivity. Wafer‐scale continuous nano‐b...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-07, Vol.36 (29), p.e2400124-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 29 |
container_start_page | e2400124 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Kokkiligadda, Samanth Mondal, Ashok Um, Soong Ho Park, Sung Ha Biswas, Chandan |
description | A nano‐biocomposite film with ultrahigh photoconductivity remains elusive and critical for bio‐optoelectronic applications. A uniform, well‐connected, high‐concentration nanomaterial network in the biological matrix remains challenging to achieve high photoconductivity. Wafer‐scale continuous nano‐biocomposite film without surface deformations and cracks plays another major obstacle. Here ultrahigh photoconductivity is observed in deoxyribonucleic acid‐molybdenum disulfide (DNA‐MoS2) nano‐biocomposite film by incorporating a high‐concentration, well‐percolated, and uniform MoS2 network in the ss‐DNA matrix. This is achieved by utilizing DNA‐MoS2 hydrogel formation, which results in crack‐free, wafer‐scale DNA‐MoS2 nano‐biocomposite films. Ultra‐high photocurrent (5.5 mA at 1 V) with a record‐high on/off ratio (1.3 × 106) is observed, five orders of magnitude higher than conventional biomaterials (≈101) reported so far. The incorporation of the Wely semimetal (Bismuth) as an electrical contact exhibits ultrahigh photoresponsivity (2.6 × 105 A W−1). Such high photoconductivity in DNA‐MoS2 nano‐biocomposite could bridge the gap between biology, electronics, and optics for innovative biomedicine, bioengineering, and neuroscience applications.
This work demonstrates the observation of ultrahigh photoconductivity in DNA‐MoS2 nano‐biocomposite film. This is achieved by utilizing DNA‐MoS2 hydrogel formation by incorporating a MoS2 network in the ss‐DNA matrix. Ultra‐high photocurrent (5.5 mA at 1 V) with a record‐high on/off ratio (1.3 × 106) is observed, five orders of magnitude higher than conventional biomaterials (≈101) reported so far. |
doi_str_mv | 10.1002/adma.202400124 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2958296247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2958296247</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2664-b72d400fbf7f94da1a75be8640013904810b3602c49119fbd21c51685c0063933</originalsourceid><addsrcrecordid>eNpdkMtKw0AUQAdRsFa3rgNu3KTeeSazjK0v6EPQrodJMrFTkkzNJJXu_AS_0S8xpeLC1b0XDpfDQegSwwgDkBudV3pEgDAATNgRGmBOcMhA8mM0AEl5KAWLT9GZ92sAkALEAE0XqTfNVrfW1YErgmXZNnpl31bB88q1LnN13mWt3dp2F9g6mMyT78-vmXshwVzXrt9vbQ9VG-dta87RSaFLby5-5xAt7-9ex4_hdPHwNE6m4YYIwcI0InkvWaRFVEiWa6wjnppY7MWpBBZjSKkAkjGJsSzSnOCMYxHzDEBQSekQXR_-bhr33hnfqsr6zJSlro3rvCKSx0QKwqIevfqHrl3X1L2dohCTPg7j0FPyQH3Y0uzUprGVbnYKg9qXVfuy6q-sSiaz5O-iPxBLbqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082095450</pqid></control><display><type>article</type><title>Observation of Ultrahigh Photoconductivity in DNA‐MoS2 Nano‐Biocomposite</title><source>Wiley Online Library All Journals</source><creator>Kokkiligadda, Samanth ; Mondal, Ashok ; Um, Soong Ho ; Park, Sung Ha ; Biswas, Chandan</creator><creatorcontrib>Kokkiligadda, Samanth ; Mondal, Ashok ; Um, Soong Ho ; Park, Sung Ha ; Biswas, Chandan</creatorcontrib><description>A nano‐biocomposite film with ultrahigh photoconductivity remains elusive and critical for bio‐optoelectronic applications. A uniform, well‐connected, high‐concentration nanomaterial network in the biological matrix remains challenging to achieve high photoconductivity. Wafer‐scale continuous nano‐biocomposite film without surface deformations and cracks plays another major obstacle. Here ultrahigh photoconductivity is observed in deoxyribonucleic acid‐molybdenum disulfide (DNA‐MoS2) nano‐biocomposite film by incorporating a high‐concentration, well‐percolated, and uniform MoS2 network in the ss‐DNA matrix. This is achieved by utilizing DNA‐MoS2 hydrogel formation, which results in crack‐free, wafer‐scale DNA‐MoS2 nano‐biocomposite films. Ultra‐high photocurrent (5.5 mA at 1 V) with a record‐high on/off ratio (1.3 × 106) is observed, five orders of magnitude higher than conventional biomaterials (≈101) reported so far. The incorporation of the Wely semimetal (Bismuth) as an electrical contact exhibits ultrahigh photoresponsivity (2.6 × 105 A W−1). Such high photoconductivity in DNA‐MoS2 nano‐biocomposite could bridge the gap between biology, electronics, and optics for innovative biomedicine, bioengineering, and neuroscience applications.
This work demonstrates the observation of ultrahigh photoconductivity in DNA‐MoS2 nano‐biocomposite film. This is achieved by utilizing DNA‐MoS2 hydrogel formation by incorporating a MoS2 network in the ss‐DNA matrix. Ultra‐high photocurrent (5.5 mA at 1 V) with a record‐high on/off ratio (1.3 × 106) is observed, five orders of magnitude higher than conventional biomaterials (≈101) reported so far.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202400124</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bioengineering ; Biomedical materials ; Bismuth ; Composite materials ; Deoxyribonucleic acid ; DNA ; Electric contacts ; electronic properties ; hydrogel ; Molybdenum disulfide ; MoS2, nano‐biocomposite ; Nanomaterials ; optoelectronic properties ; Optoelectronics ; Photoconductivity ; Photoelectric effect</subject><ispartof>Advanced materials (Weinheim), 2024-07, Vol.36 (29), p.e2400124-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2083-4219 ; 0000-0002-4188-7184 ; 0000-0002-3992-9576 ; 0000-0002-0256-3363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202400124$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202400124$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kokkiligadda, Samanth</creatorcontrib><creatorcontrib>Mondal, Ashok</creatorcontrib><creatorcontrib>Um, Soong Ho</creatorcontrib><creatorcontrib>Park, Sung Ha</creatorcontrib><creatorcontrib>Biswas, Chandan</creatorcontrib><title>Observation of Ultrahigh Photoconductivity in DNA‐MoS2 Nano‐Biocomposite</title><title>Advanced materials (Weinheim)</title><description>A nano‐biocomposite film with ultrahigh photoconductivity remains elusive and critical for bio‐optoelectronic applications. A uniform, well‐connected, high‐concentration nanomaterial network in the biological matrix remains challenging to achieve high photoconductivity. Wafer‐scale continuous nano‐biocomposite film without surface deformations and cracks plays another major obstacle. Here ultrahigh photoconductivity is observed in deoxyribonucleic acid‐molybdenum disulfide (DNA‐MoS2) nano‐biocomposite film by incorporating a high‐concentration, well‐percolated, and uniform MoS2 network in the ss‐DNA matrix. This is achieved by utilizing DNA‐MoS2 hydrogel formation, which results in crack‐free, wafer‐scale DNA‐MoS2 nano‐biocomposite films. Ultra‐high photocurrent (5.5 mA at 1 V) with a record‐high on/off ratio (1.3 × 106) is observed, five orders of magnitude higher than conventional biomaterials (≈101) reported so far. The incorporation of the Wely semimetal (Bismuth) as an electrical contact exhibits ultrahigh photoresponsivity (2.6 × 105 A W−1). Such high photoconductivity in DNA‐MoS2 nano‐biocomposite could bridge the gap between biology, electronics, and optics for innovative biomedicine, bioengineering, and neuroscience applications.
This work demonstrates the observation of ultrahigh photoconductivity in DNA‐MoS2 nano‐biocomposite film. This is achieved by utilizing DNA‐MoS2 hydrogel formation by incorporating a MoS2 network in the ss‐DNA matrix. Ultra‐high photocurrent (5.5 mA at 1 V) with a record‐high on/off ratio (1.3 × 106) is observed, five orders of magnitude higher than conventional biomaterials (≈101) reported so far.</description><subject>Bioengineering</subject><subject>Biomedical materials</subject><subject>Bismuth</subject><subject>Composite materials</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Electric contacts</subject><subject>electronic properties</subject><subject>hydrogel</subject><subject>Molybdenum disulfide</subject><subject>MoS2, nano‐biocomposite</subject><subject>Nanomaterials</subject><subject>optoelectronic properties</subject><subject>Optoelectronics</subject><subject>Photoconductivity</subject><subject>Photoelectric effect</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkMtKw0AUQAdRsFa3rgNu3KTeeSazjK0v6EPQrodJMrFTkkzNJJXu_AS_0S8xpeLC1b0XDpfDQegSwwgDkBudV3pEgDAATNgRGmBOcMhA8mM0AEl5KAWLT9GZ92sAkALEAE0XqTfNVrfW1YErgmXZNnpl31bB88q1LnN13mWt3dp2F9g6mMyT78-vmXshwVzXrt9vbQ9VG-dta87RSaFLby5-5xAt7-9ex4_hdPHwNE6m4YYIwcI0InkvWaRFVEiWa6wjnppY7MWpBBZjSKkAkjGJsSzSnOCMYxHzDEBQSekQXR_-bhr33hnfqsr6zJSlro3rvCKSx0QKwqIevfqHrl3X1L2dohCTPg7j0FPyQH3Y0uzUprGVbnYKg9qXVfuy6q-sSiaz5O-iPxBLbqQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Kokkiligadda, Samanth</creator><creator>Mondal, Ashok</creator><creator>Um, Soong Ho</creator><creator>Park, Sung Ha</creator><creator>Biswas, Chandan</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2083-4219</orcidid><orcidid>https://orcid.org/0000-0002-4188-7184</orcidid><orcidid>https://orcid.org/0000-0002-3992-9576</orcidid><orcidid>https://orcid.org/0000-0002-0256-3363</orcidid></search><sort><creationdate>20240701</creationdate><title>Observation of Ultrahigh Photoconductivity in DNA‐MoS2 Nano‐Biocomposite</title><author>Kokkiligadda, Samanth ; Mondal, Ashok ; Um, Soong Ho ; Park, Sung Ha ; Biswas, Chandan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2664-b72d400fbf7f94da1a75be8640013904810b3602c49119fbd21c51685c0063933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bioengineering</topic><topic>Biomedical materials</topic><topic>Bismuth</topic><topic>Composite materials</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Electric contacts</topic><topic>electronic properties</topic><topic>hydrogel</topic><topic>Molybdenum disulfide</topic><topic>MoS2, nano‐biocomposite</topic><topic>Nanomaterials</topic><topic>optoelectronic properties</topic><topic>Optoelectronics</topic><topic>Photoconductivity</topic><topic>Photoelectric effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kokkiligadda, Samanth</creatorcontrib><creatorcontrib>Mondal, Ashok</creatorcontrib><creatorcontrib>Um, Soong Ho</creatorcontrib><creatorcontrib>Park, Sung Ha</creatorcontrib><creatorcontrib>Biswas, Chandan</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kokkiligadda, Samanth</au><au>Mondal, Ashok</au><au>Um, Soong Ho</au><au>Park, Sung Ha</au><au>Biswas, Chandan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of Ultrahigh Photoconductivity in DNA‐MoS2 Nano‐Biocomposite</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>36</volume><issue>29</issue><spage>e2400124</spage><epage>n/a</epage><pages>e2400124-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>A nano‐biocomposite film with ultrahigh photoconductivity remains elusive and critical for bio‐optoelectronic applications. A uniform, well‐connected, high‐concentration nanomaterial network in the biological matrix remains challenging to achieve high photoconductivity. Wafer‐scale continuous nano‐biocomposite film without surface deformations and cracks plays another major obstacle. Here ultrahigh photoconductivity is observed in deoxyribonucleic acid‐molybdenum disulfide (DNA‐MoS2) nano‐biocomposite film by incorporating a high‐concentration, well‐percolated, and uniform MoS2 network in the ss‐DNA matrix. This is achieved by utilizing DNA‐MoS2 hydrogel formation, which results in crack‐free, wafer‐scale DNA‐MoS2 nano‐biocomposite films. Ultra‐high photocurrent (5.5 mA at 1 V) with a record‐high on/off ratio (1.3 × 106) is observed, five orders of magnitude higher than conventional biomaterials (≈101) reported so far. The incorporation of the Wely semimetal (Bismuth) as an electrical contact exhibits ultrahigh photoresponsivity (2.6 × 105 A W−1). Such high photoconductivity in DNA‐MoS2 nano‐biocomposite could bridge the gap between biology, electronics, and optics for innovative biomedicine, bioengineering, and neuroscience applications.
This work demonstrates the observation of ultrahigh photoconductivity in DNA‐MoS2 nano‐biocomposite film. This is achieved by utilizing DNA‐MoS2 hydrogel formation by incorporating a MoS2 network in the ss‐DNA matrix. Ultra‐high photocurrent (5.5 mA at 1 V) with a record‐high on/off ratio (1.3 × 106) is observed, five orders of magnitude higher than conventional biomaterials (≈101) reported so far.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202400124</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2083-4219</orcidid><orcidid>https://orcid.org/0000-0002-4188-7184</orcidid><orcidid>https://orcid.org/0000-0002-3992-9576</orcidid><orcidid>https://orcid.org/0000-0002-0256-3363</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-07, Vol.36 (29), p.e2400124-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2958296247 |
source | Wiley Online Library All Journals |
subjects | Bioengineering Biomedical materials Bismuth Composite materials Deoxyribonucleic acid DNA Electric contacts electronic properties hydrogel Molybdenum disulfide MoS2, nano‐biocomposite Nanomaterials optoelectronic properties Optoelectronics Photoconductivity Photoelectric effect |
title | Observation of Ultrahigh Photoconductivity in DNA‐MoS2 Nano‐Biocomposite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20Ultrahigh%20Photoconductivity%20in%20DNA%E2%80%90MoS2%20Nano%E2%80%90Biocomposite&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Kokkiligadda,%20Samanth&rft.date=2024-07-01&rft.volume=36&rft.issue=29&rft.spage=e2400124&rft.epage=n/a&rft.pages=e2400124-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202400124&rft_dat=%3Cproquest_wiley%3E2958296247%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082095450&rft_id=info:pmid/&rfr_iscdi=true |