Observation of Ultrahigh Photoconductivity in DNA‐MoS2 Nano‐Biocomposite

A nano‐biocomposite film with ultrahigh photoconductivity remains elusive and critical for bio‐optoelectronic applications. A uniform, well‐connected, high‐concentration nanomaterial network in the biological matrix remains challenging to achieve high photoconductivity. Wafer‐scale continuous nano‐b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-07, Vol.36 (29), p.e2400124-n/a
Hauptverfasser: Kokkiligadda, Samanth, Mondal, Ashok, Um, Soong Ho, Park, Sung Ha, Biswas, Chandan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 29
container_start_page e2400124
container_title Advanced materials (Weinheim)
container_volume 36
creator Kokkiligadda, Samanth
Mondal, Ashok
Um, Soong Ho
Park, Sung Ha
Biswas, Chandan
description A nano‐biocomposite film with ultrahigh photoconductivity remains elusive and critical for bio‐optoelectronic applications. A uniform, well‐connected, high‐concentration nanomaterial network in the biological matrix remains challenging to achieve high photoconductivity. Wafer‐scale continuous nano‐biocomposite film without surface deformations and cracks plays another major obstacle. Here ultrahigh photoconductivity is observed in deoxyribonucleic acid‐molybdenum disulfide (DNA‐MoS2) nano‐biocomposite film by incorporating a high‐concentration, well‐percolated, and uniform MoS2 network in the ss‐DNA matrix. This is achieved by utilizing DNA‐MoS2 hydrogel formation, which results in crack‐free, wafer‐scale DNA‐MoS2 nano‐biocomposite films. Ultra‐high photocurrent (5.5 mA at 1 V) with a record‐high on/off ratio (1.3 × 106) is observed, five orders of magnitude higher than conventional biomaterials (≈101) reported so far. The incorporation of the Wely semimetal (Bismuth) as an electrical contact exhibits ultrahigh photoresponsivity (2.6 × 105 A W−1). Such high photoconductivity in DNA‐MoS2 nano‐biocomposite could bridge the gap between biology, electronics, and optics for innovative biomedicine, bioengineering, and neuroscience applications. This work demonstrates the observation of ultrahigh photoconductivity in DNA‐MoS2 nano‐biocomposite film. This is achieved by utilizing DNA‐MoS2 hydrogel formation by incorporating a MoS2 network in the ss‐DNA matrix. Ultra‐high photocurrent (5.5 mA at 1 V) with a record‐high on/off ratio (1.3 × 106) is observed, five orders of magnitude higher than conventional biomaterials (≈101) reported so far.
doi_str_mv 10.1002/adma.202400124
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2958296247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2958296247</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2664-b72d400fbf7f94da1a75be8640013904810b3602c49119fbd21c51685c0063933</originalsourceid><addsrcrecordid>eNpdkMtKw0AUQAdRsFa3rgNu3KTeeSazjK0v6EPQrodJMrFTkkzNJJXu_AS_0S8xpeLC1b0XDpfDQegSwwgDkBudV3pEgDAATNgRGmBOcMhA8mM0AEl5KAWLT9GZ92sAkALEAE0XqTfNVrfW1YErgmXZNnpl31bB88q1LnN13mWt3dp2F9g6mMyT78-vmXshwVzXrt9vbQ9VG-dta87RSaFLby5-5xAt7-9ex4_hdPHwNE6m4YYIwcI0InkvWaRFVEiWa6wjnppY7MWpBBZjSKkAkjGJsSzSnOCMYxHzDEBQSekQXR_-bhr33hnfqsr6zJSlro3rvCKSx0QKwqIevfqHrl3X1L2dohCTPg7j0FPyQH3Y0uzUprGVbnYKg9qXVfuy6q-sSiaz5O-iPxBLbqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082095450</pqid></control><display><type>article</type><title>Observation of Ultrahigh Photoconductivity in DNA‐MoS2 Nano‐Biocomposite</title><source>Wiley Online Library All Journals</source><creator>Kokkiligadda, Samanth ; Mondal, Ashok ; Um, Soong Ho ; Park, Sung Ha ; Biswas, Chandan</creator><creatorcontrib>Kokkiligadda, Samanth ; Mondal, Ashok ; Um, Soong Ho ; Park, Sung Ha ; Biswas, Chandan</creatorcontrib><description>A nano‐biocomposite film with ultrahigh photoconductivity remains elusive and critical for bio‐optoelectronic applications. A uniform, well‐connected, high‐concentration nanomaterial network in the biological matrix remains challenging to achieve high photoconductivity. Wafer‐scale continuous nano‐biocomposite film without surface deformations and cracks plays another major obstacle. Here ultrahigh photoconductivity is observed in deoxyribonucleic acid‐molybdenum disulfide (DNA‐MoS2) nano‐biocomposite film by incorporating a high‐concentration, well‐percolated, and uniform MoS2 network in the ss‐DNA matrix. This is achieved by utilizing DNA‐MoS2 hydrogel formation, which results in crack‐free, wafer‐scale DNA‐MoS2 nano‐biocomposite films. Ultra‐high photocurrent (5.5 mA at 1 V) with a record‐high on/off ratio (1.3 × 106) is observed, five orders of magnitude higher than conventional biomaterials (≈101) reported so far. The incorporation of the Wely semimetal (Bismuth) as an electrical contact exhibits ultrahigh photoresponsivity (2.6 × 105 A W−1). Such high photoconductivity in DNA‐MoS2 nano‐biocomposite could bridge the gap between biology, electronics, and optics for innovative biomedicine, bioengineering, and neuroscience applications. This work demonstrates the observation of ultrahigh photoconductivity in DNA‐MoS2 nano‐biocomposite film. This is achieved by utilizing DNA‐MoS2 hydrogel formation by incorporating a MoS2 network in the ss‐DNA matrix. Ultra‐high photocurrent (5.5 mA at 1 V) with a record‐high on/off ratio (1.3 × 106) is observed, five orders of magnitude higher than conventional biomaterials (≈101) reported so far.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202400124</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bioengineering ; Biomedical materials ; Bismuth ; Composite materials ; Deoxyribonucleic acid ; DNA ; Electric contacts ; electronic properties ; hydrogel ; Molybdenum disulfide ; MoS2, nano‐biocomposite ; Nanomaterials ; optoelectronic properties ; Optoelectronics ; Photoconductivity ; Photoelectric effect</subject><ispartof>Advanced materials (Weinheim), 2024-07, Vol.36 (29), p.e2400124-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2083-4219 ; 0000-0002-4188-7184 ; 0000-0002-3992-9576 ; 0000-0002-0256-3363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202400124$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202400124$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kokkiligadda, Samanth</creatorcontrib><creatorcontrib>Mondal, Ashok</creatorcontrib><creatorcontrib>Um, Soong Ho</creatorcontrib><creatorcontrib>Park, Sung Ha</creatorcontrib><creatorcontrib>Biswas, Chandan</creatorcontrib><title>Observation of Ultrahigh Photoconductivity in DNA‐MoS2 Nano‐Biocomposite</title><title>Advanced materials (Weinheim)</title><description>A nano‐biocomposite film with ultrahigh photoconductivity remains elusive and critical for bio‐optoelectronic applications. A uniform, well‐connected, high‐concentration nanomaterial network in the biological matrix remains challenging to achieve high photoconductivity. Wafer‐scale continuous nano‐biocomposite film without surface deformations and cracks plays another major obstacle. Here ultrahigh photoconductivity is observed in deoxyribonucleic acid‐molybdenum disulfide (DNA‐MoS2) nano‐biocomposite film by incorporating a high‐concentration, well‐percolated, and uniform MoS2 network in the ss‐DNA matrix. This is achieved by utilizing DNA‐MoS2 hydrogel formation, which results in crack‐free, wafer‐scale DNA‐MoS2 nano‐biocomposite films. Ultra‐high photocurrent (5.5 mA at 1 V) with a record‐high on/off ratio (1.3 × 106) is observed, five orders of magnitude higher than conventional biomaterials (≈101) reported so far. The incorporation of the Wely semimetal (Bismuth) as an electrical contact exhibits ultrahigh photoresponsivity (2.6 × 105 A W−1). Such high photoconductivity in DNA‐MoS2 nano‐biocomposite could bridge the gap between biology, electronics, and optics for innovative biomedicine, bioengineering, and neuroscience applications. This work demonstrates the observation of ultrahigh photoconductivity in DNA‐MoS2 nano‐biocomposite film. This is achieved by utilizing DNA‐MoS2 hydrogel formation by incorporating a MoS2 network in the ss‐DNA matrix. Ultra‐high photocurrent (5.5 mA at 1 V) with a record‐high on/off ratio (1.3 × 106) is observed, five orders of magnitude higher than conventional biomaterials (≈101) reported so far.</description><subject>Bioengineering</subject><subject>Biomedical materials</subject><subject>Bismuth</subject><subject>Composite materials</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Electric contacts</subject><subject>electronic properties</subject><subject>hydrogel</subject><subject>Molybdenum disulfide</subject><subject>MoS2, nano‐biocomposite</subject><subject>Nanomaterials</subject><subject>optoelectronic properties</subject><subject>Optoelectronics</subject><subject>Photoconductivity</subject><subject>Photoelectric effect</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkMtKw0AUQAdRsFa3rgNu3KTeeSazjK0v6EPQrodJMrFTkkzNJJXu_AS_0S8xpeLC1b0XDpfDQegSwwgDkBudV3pEgDAATNgRGmBOcMhA8mM0AEl5KAWLT9GZ92sAkALEAE0XqTfNVrfW1YErgmXZNnpl31bB88q1LnN13mWt3dp2F9g6mMyT78-vmXshwVzXrt9vbQ9VG-dta87RSaFLby5-5xAt7-9ex4_hdPHwNE6m4YYIwcI0InkvWaRFVEiWa6wjnppY7MWpBBZjSKkAkjGJsSzSnOCMYxHzDEBQSekQXR_-bhr33hnfqsr6zJSlro3rvCKSx0QKwqIevfqHrl3X1L2dohCTPg7j0FPyQH3Y0uzUprGVbnYKg9qXVfuy6q-sSiaz5O-iPxBLbqQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Kokkiligadda, Samanth</creator><creator>Mondal, Ashok</creator><creator>Um, Soong Ho</creator><creator>Park, Sung Ha</creator><creator>Biswas, Chandan</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2083-4219</orcidid><orcidid>https://orcid.org/0000-0002-4188-7184</orcidid><orcidid>https://orcid.org/0000-0002-3992-9576</orcidid><orcidid>https://orcid.org/0000-0002-0256-3363</orcidid></search><sort><creationdate>20240701</creationdate><title>Observation of Ultrahigh Photoconductivity in DNA‐MoS2 Nano‐Biocomposite</title><author>Kokkiligadda, Samanth ; Mondal, Ashok ; Um, Soong Ho ; Park, Sung Ha ; Biswas, Chandan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2664-b72d400fbf7f94da1a75be8640013904810b3602c49119fbd21c51685c0063933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bioengineering</topic><topic>Biomedical materials</topic><topic>Bismuth</topic><topic>Composite materials</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Electric contacts</topic><topic>electronic properties</topic><topic>hydrogel</topic><topic>Molybdenum disulfide</topic><topic>MoS2, nano‐biocomposite</topic><topic>Nanomaterials</topic><topic>optoelectronic properties</topic><topic>Optoelectronics</topic><topic>Photoconductivity</topic><topic>Photoelectric effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kokkiligadda, Samanth</creatorcontrib><creatorcontrib>Mondal, Ashok</creatorcontrib><creatorcontrib>Um, Soong Ho</creatorcontrib><creatorcontrib>Park, Sung Ha</creatorcontrib><creatorcontrib>Biswas, Chandan</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kokkiligadda, Samanth</au><au>Mondal, Ashok</au><au>Um, Soong Ho</au><au>Park, Sung Ha</au><au>Biswas, Chandan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of Ultrahigh Photoconductivity in DNA‐MoS2 Nano‐Biocomposite</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>36</volume><issue>29</issue><spage>e2400124</spage><epage>n/a</epage><pages>e2400124-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>A nano‐biocomposite film with ultrahigh photoconductivity remains elusive and critical for bio‐optoelectronic applications. A uniform, well‐connected, high‐concentration nanomaterial network in the biological matrix remains challenging to achieve high photoconductivity. Wafer‐scale continuous nano‐biocomposite film without surface deformations and cracks plays another major obstacle. Here ultrahigh photoconductivity is observed in deoxyribonucleic acid‐molybdenum disulfide (DNA‐MoS2) nano‐biocomposite film by incorporating a high‐concentration, well‐percolated, and uniform MoS2 network in the ss‐DNA matrix. This is achieved by utilizing DNA‐MoS2 hydrogel formation, which results in crack‐free, wafer‐scale DNA‐MoS2 nano‐biocomposite films. Ultra‐high photocurrent (5.5 mA at 1 V) with a record‐high on/off ratio (1.3 × 106) is observed, five orders of magnitude higher than conventional biomaterials (≈101) reported so far. The incorporation of the Wely semimetal (Bismuth) as an electrical contact exhibits ultrahigh photoresponsivity (2.6 × 105 A W−1). Such high photoconductivity in DNA‐MoS2 nano‐biocomposite could bridge the gap between biology, electronics, and optics for innovative biomedicine, bioengineering, and neuroscience applications. This work demonstrates the observation of ultrahigh photoconductivity in DNA‐MoS2 nano‐biocomposite film. This is achieved by utilizing DNA‐MoS2 hydrogel formation by incorporating a MoS2 network in the ss‐DNA matrix. Ultra‐high photocurrent (5.5 mA at 1 V) with a record‐high on/off ratio (1.3 × 106) is observed, five orders of magnitude higher than conventional biomaterials (≈101) reported so far.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202400124</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2083-4219</orcidid><orcidid>https://orcid.org/0000-0002-4188-7184</orcidid><orcidid>https://orcid.org/0000-0002-3992-9576</orcidid><orcidid>https://orcid.org/0000-0002-0256-3363</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-07, Vol.36 (29), p.e2400124-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2958296247
source Wiley Online Library All Journals
subjects Bioengineering
Biomedical materials
Bismuth
Composite materials
Deoxyribonucleic acid
DNA
Electric contacts
electronic properties
hydrogel
Molybdenum disulfide
MoS2, nano‐biocomposite
Nanomaterials
optoelectronic properties
Optoelectronics
Photoconductivity
Photoelectric effect
title Observation of Ultrahigh Photoconductivity in DNA‐MoS2 Nano‐Biocomposite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20Ultrahigh%20Photoconductivity%20in%20DNA%E2%80%90MoS2%20Nano%E2%80%90Biocomposite&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Kokkiligadda,%20Samanth&rft.date=2024-07-01&rft.volume=36&rft.issue=29&rft.spage=e2400124&rft.epage=n/a&rft.pages=e2400124-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202400124&rft_dat=%3Cproquest_wiley%3E2958296247%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082095450&rft_id=info:pmid/&rfr_iscdi=true