Atomic-Scale Imaging of Clay Mineral Nanosheets and Their Supramolecular Complexes through Electron Microscopy: A Supramolecular Chemist’s Perspective

Recent advancements in electron microscopy techniques have revolutionized the ability to directly visualize and understand the intricate world of supramolecular chemistry. This paper provides a concise overview of a study delving into the atomic-scale imaging of monolayer clay mineral nanosheets and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2024-03, Vol.40 (12), p.6065-6076
1. Verfasser: Ishida, Yohei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6076
container_issue 12
container_start_page 6065
container_title Langmuir
container_volume 40
creator Ishida, Yohei
description Recent advancements in electron microscopy techniques have revolutionized the ability to directly visualize and understand the intricate world of supramolecular chemistry. This paper provides a concise overview of a study delving into the atomic-scale imaging of monolayer clay mineral nanosheets and their associated supramolecular complexes. The imaging is conducted by harnessing the power of aberration-corrected scanning transmission electron microscopy (STEM). Clay mineral nanosheets, with their anionic charge and ultrathin thickness (of 1 nm), serve as a stable Coulombic host material for cationic guest molecules through electrostatic interactions, facilitating exceptional stability and control during observation. By incorporation of heavy-metal atom markers coordinated within the target molecules, high-angle annular dark field STEM enables a clear visualization of these supramolecular complexes. This approach helps to overcome the limitations of graphene-based systems and expands the possibilities of atomic-scale imaging of nonperiodic molecular assemblies formed by weak supramolecular interactions. The fusion of electron microscopy techniques with the principles of supramolecular and material chemistry offers exciting opportunities for studying the structure, behavior, and properties of complex supramolecular systems. It sheds light on the intricate molecular architectures and design principles governing these systems. This study showcases the immense potential of electron microscopy in supramolecular chemistry and invites researchers from various disciplines to explore the transformative possibilities of atomic-scale imaging in the field.
doi_str_mv 10.1021/acs.langmuir.3c03779
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2958292771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2958292771</sourcerecordid><originalsourceid>FETCH-LOGICAL-a297t-12acd81e278e07cdd6584e9cab2361dbe247c1f5b9b4d6348e060e6d7eb656db3</originalsourceid><addsrcrecordid>eNp9kUtu2zAURYmgQewk3UFRcNiJHP4kSp0ZhtsYyA9IOhYo8tmSQYkqKQX1rMtItteVlIadTAp0xAHPueR7F6FPlMwoYfRK6TCzqtu0Y-NnXBMuZXGCpjRlJElzJj-gKZGCJ1JkfILOQ9gSQgouijM04bnIBed0il7mg2sbnTxqZQGvWrVpug12a7ywaodvmw68svhOdS7UAEPAqjP4qYbG48ex96p1FvRolccL1_YWfkHAQ-3duKnxMl4N3nUxRnsXtOt3X_H8H6-GtgnDn9-vAT-AD32Umme4RKdrZQN8PJ4X6Me35dPiOrm5_75azG8SxQo5JJQpbXIKTOZApDYmS3MBhVYV4xk1FTAhNV2nVVEJk3ERqYxAZiRUWZqZil-gL4fc3rufI4ShjL_RYONqwY2hZEVcZsGkpBEVB3Q_TfCwLnvftMrvSkrKfSdl7KR866Q8dhK1z8cXxqoF8y69lRABcgD2-taNvosD_z_zL476oLc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2958292771</pqid></control><display><type>article</type><title>Atomic-Scale Imaging of Clay Mineral Nanosheets and Their Supramolecular Complexes through Electron Microscopy: A Supramolecular Chemist’s Perspective</title><source>ACS Publications</source><creator>Ishida, Yohei</creator><creatorcontrib>Ishida, Yohei</creatorcontrib><description>Recent advancements in electron microscopy techniques have revolutionized the ability to directly visualize and understand the intricate world of supramolecular chemistry. This paper provides a concise overview of a study delving into the atomic-scale imaging of monolayer clay mineral nanosheets and their associated supramolecular complexes. The imaging is conducted by harnessing the power of aberration-corrected scanning transmission electron microscopy (STEM). Clay mineral nanosheets, with their anionic charge and ultrathin thickness (of 1 nm), serve as a stable Coulombic host material for cationic guest molecules through electrostatic interactions, facilitating exceptional stability and control during observation. By incorporation of heavy-metal atom markers coordinated within the target molecules, high-angle annular dark field STEM enables a clear visualization of these supramolecular complexes. This approach helps to overcome the limitations of graphene-based systems and expands the possibilities of atomic-scale imaging of nonperiodic molecular assemblies formed by weak supramolecular interactions. The fusion of electron microscopy techniques with the principles of supramolecular and material chemistry offers exciting opportunities for studying the structure, behavior, and properties of complex supramolecular systems. It sheds light on the intricate molecular architectures and design principles governing these systems. This study showcases the immense potential of electron microscopy in supramolecular chemistry and invites researchers from various disciplines to explore the transformative possibilities of atomic-scale imaging in the field.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.3c03779</identifier><identifier>PMID: 38484331</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2024-03, Vol.40 (12), p.6065-6076</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a297t-12acd81e278e07cdd6584e9cab2361dbe247c1f5b9b4d6348e060e6d7eb656db3</cites><orcidid>0000-0001-8541-2714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.3c03779$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.3c03779$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38484331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishida, Yohei</creatorcontrib><title>Atomic-Scale Imaging of Clay Mineral Nanosheets and Their Supramolecular Complexes through Electron Microscopy: A Supramolecular Chemist’s Perspective</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Recent advancements in electron microscopy techniques have revolutionized the ability to directly visualize and understand the intricate world of supramolecular chemistry. This paper provides a concise overview of a study delving into the atomic-scale imaging of monolayer clay mineral nanosheets and their associated supramolecular complexes. The imaging is conducted by harnessing the power of aberration-corrected scanning transmission electron microscopy (STEM). Clay mineral nanosheets, with their anionic charge and ultrathin thickness (of 1 nm), serve as a stable Coulombic host material for cationic guest molecules through electrostatic interactions, facilitating exceptional stability and control during observation. By incorporation of heavy-metal atom markers coordinated within the target molecules, high-angle annular dark field STEM enables a clear visualization of these supramolecular complexes. This approach helps to overcome the limitations of graphene-based systems and expands the possibilities of atomic-scale imaging of nonperiodic molecular assemblies formed by weak supramolecular interactions. The fusion of electron microscopy techniques with the principles of supramolecular and material chemistry offers exciting opportunities for studying the structure, behavior, and properties of complex supramolecular systems. It sheds light on the intricate molecular architectures and design principles governing these systems. This study showcases the immense potential of electron microscopy in supramolecular chemistry and invites researchers from various disciplines to explore the transformative possibilities of atomic-scale imaging in the field.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUtu2zAURYmgQewk3UFRcNiJHP4kSp0ZhtsYyA9IOhYo8tmSQYkqKQX1rMtItteVlIadTAp0xAHPueR7F6FPlMwoYfRK6TCzqtu0Y-NnXBMuZXGCpjRlJElzJj-gKZGCJ1JkfILOQ9gSQgouijM04bnIBed0il7mg2sbnTxqZQGvWrVpug12a7ywaodvmw68svhOdS7UAEPAqjP4qYbG48ex96p1FvRolccL1_YWfkHAQ-3duKnxMl4N3nUxRnsXtOt3X_H8H6-GtgnDn9-vAT-AD32Umme4RKdrZQN8PJ4X6Me35dPiOrm5_75azG8SxQo5JJQpbXIKTOZApDYmS3MBhVYV4xk1FTAhNV2nVVEJk3ERqYxAZiRUWZqZil-gL4fc3rufI4ShjL_RYONqwY2hZEVcZsGkpBEVB3Q_TfCwLnvftMrvSkrKfSdl7KR866Q8dhK1z8cXxqoF8y69lRABcgD2-taNvosD_z_zL476oLc</recordid><startdate>20240326</startdate><enddate>20240326</enddate><creator>Ishida, Yohei</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8541-2714</orcidid></search><sort><creationdate>20240326</creationdate><title>Atomic-Scale Imaging of Clay Mineral Nanosheets and Their Supramolecular Complexes through Electron Microscopy: A Supramolecular Chemist’s Perspective</title><author>Ishida, Yohei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a297t-12acd81e278e07cdd6584e9cab2361dbe247c1f5b9b4d6348e060e6d7eb656db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishida, Yohei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishida, Yohei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic-Scale Imaging of Clay Mineral Nanosheets and Their Supramolecular Complexes through Electron Microscopy: A Supramolecular Chemist’s Perspective</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2024-03-26</date><risdate>2024</risdate><volume>40</volume><issue>12</issue><spage>6065</spage><epage>6076</epage><pages>6065-6076</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Recent advancements in electron microscopy techniques have revolutionized the ability to directly visualize and understand the intricate world of supramolecular chemistry. This paper provides a concise overview of a study delving into the atomic-scale imaging of monolayer clay mineral nanosheets and their associated supramolecular complexes. The imaging is conducted by harnessing the power of aberration-corrected scanning transmission electron microscopy (STEM). Clay mineral nanosheets, with their anionic charge and ultrathin thickness (of 1 nm), serve as a stable Coulombic host material for cationic guest molecules through electrostatic interactions, facilitating exceptional stability and control during observation. By incorporation of heavy-metal atom markers coordinated within the target molecules, high-angle annular dark field STEM enables a clear visualization of these supramolecular complexes. This approach helps to overcome the limitations of graphene-based systems and expands the possibilities of atomic-scale imaging of nonperiodic molecular assemblies formed by weak supramolecular interactions. The fusion of electron microscopy techniques with the principles of supramolecular and material chemistry offers exciting opportunities for studying the structure, behavior, and properties of complex supramolecular systems. It sheds light on the intricate molecular architectures and design principles governing these systems. This study showcases the immense potential of electron microscopy in supramolecular chemistry and invites researchers from various disciplines to explore the transformative possibilities of atomic-scale imaging in the field.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38484331</pmid><doi>10.1021/acs.langmuir.3c03779</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8541-2714</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2024-03, Vol.40 (12), p.6065-6076
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_2958292771
source ACS Publications
title Atomic-Scale Imaging of Clay Mineral Nanosheets and Their Supramolecular Complexes through Electron Microscopy: A Supramolecular Chemist’s Perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic-Scale%20Imaging%20of%20Clay%20Mineral%20Nanosheets%20and%20Their%20Supramolecular%20Complexes%20through%20Electron%20Microscopy:%20A%20Supramolecular%20Chemist%E2%80%99s%20Perspective&rft.jtitle=Langmuir&rft.au=Ishida,%20Yohei&rft.date=2024-03-26&rft.volume=40&rft.issue=12&rft.spage=6065&rft.epage=6076&rft.pages=6065-6076&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.3c03779&rft_dat=%3Cproquest_cross%3E2958292771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2958292771&rft_id=info:pmid/38484331&rfr_iscdi=true