Preparation of 3D flexible SERS substrates by mixing gold nanorods in hydrogels for the detection of malachite green and crystal violet
A simple and cost-effective fabrication method of gold nanorods (AuNRs) nanoparticles hybridized with polyvinyl alcohol hydrogel (AuNR/PVA) for SERS substrate is described. The AuNR/PVA achieves the control of inter-particle nanogap by modulating the density of gold nanorods, and inter-particle nano...
Gespeichert in:
Veröffentlicht in: | Mikrochimica acta (1966) 2024-04, Vol.191 (4), p.205-205, Article 205 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A simple and cost-effective fabrication method of gold nanorods (AuNRs) nanoparticles hybridized with polyvinyl alcohol hydrogel (AuNR/PVA) for SERS substrate is described. The AuNR/PVA achieves the control of inter-particle nanogap by modulating the density of gold nanorods, and inter-particle nanogap by the spatial deformation of the hydrogel, and the reduction of the gap between the AuNRs deposited on hydrogel makes the SERS enhancement. In addition, the AuNR/PVA substrate maintains high SERS activity after more than 100 cycles of bending and storage in air for 30 days, and the substrate possesses high sensitivity and high reproducibility. Combining a flexible and transparent surface-enhanced Raman spectroscopy (SERS) substrate for in situ detection with a small portable Raman can be applied to scenarios such as environmental detection and hazardous materials detection. The substrate showed excellent SERS activity against malachite green (MG) and crystal violet (CV) with limits of detection of 1.18 × 10
−13
M and 7.17 × 10
−12
M, respectively. The usability of the proposed SERS substrate was demonstrated by detecting the above contaminants in aquatic water. This work not only utilizes a cost-effective method for mass production but also provides a reliable and convenient platform for the preparation of other noble metal flexible substrates.
Graphical Abstract |
---|---|
ISSN: | 0026-3672 1436-5073 |
DOI: | 10.1007/s00604-024-06284-6 |