Asymptotic stability of the relativistic Maxwellian
Global classical solutions near the relativistic Maxwellian are constructed for the relativistic Boltzmann equation in both a periodic box and the whole space. For both cases, we are able to get the non‐negativity of the global solution under less restriction than in (Publ. Res. Inst. Math. Sci. 199...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2006-09, Vol.29 (13), p.1481-1499 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1499 |
---|---|
container_issue | 13 |
container_start_page | 1481 |
container_title | Mathematical methods in the applied sciences |
container_volume | 29 |
creator | Hsiao, Ling Yu, Hongjun |
description | Global classical solutions near the relativistic Maxwellian are constructed for the relativistic Boltzmann equation in both a periodic box and the whole space. For both cases, we are able to get the non‐negativity of the global solution under less restriction than in (Publ. Res. Inst. Math. Sci. 1993; 29:301–347) on the scattering kernel. Copyright © 2006 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mma.736 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29572060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29572060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3606-aa234e158a50666d9cefdeb7e878b667c251f2ab0e6995e175fb1ac07bcf362f3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4MoOKf4L_SiHqTzJWmT9jiGTmGbCMpgl_CaJRht19l0bv3v7ejQk6d3eB8fPz5CLikMKAC7KwocSC6OSI9CmoY0kuKY9IBKCCNGo1Ny5v0HACSUsh7hQ98U67qsnQ58jZnLXd0EpQ3qdxNUJsfafTu__05xtzV57nB1Tk4s5t5cHG6fvD3cv44ew8nz-Gk0nISaCxAhIuORoXGCMQghlqk2dmkyaRKZZEJIzWJqGWZgRJrGhsrYZhQ1yExbLpjlfXLdeddV-bUxvlaF87rdgCtTbrxiaSwZCGjBmw7UVel9ZaxaV67AqlEU1D6KaqOoNkpLXh2U6DXmtsKVdv4Pl2nCIdkbbztu63LT_KdT0-mws4Yd3ZYyu18aq08lJJexms_Gir2IhZzPFmrEfwCdeH5-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29572060</pqid></control><display><type>article</type><title>Asymptotic stability of the relativistic Maxwellian</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hsiao, Ling ; Yu, Hongjun</creator><creatorcontrib>Hsiao, Ling ; Yu, Hongjun</creatorcontrib><description>Global classical solutions near the relativistic Maxwellian are constructed for the relativistic Boltzmann equation in both a periodic box and the whole space. For both cases, we are able to get the non‐negativity of the global solution under less restriction than in (Publ. Res. Inst. Math. Sci. 1993; 29:301–347) on the scattering kernel. Copyright © 2006 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.736</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>energy estimate ; Exact sciences and technology ; global classical solution ; Mathematical analysis ; Mathematics ; Partial differential equations ; relativistic Boltzmann equation ; Sciences and techniques of general use</subject><ispartof>Mathematical methods in the applied sciences, 2006-09, Vol.29 (13), p.1481-1499</ispartof><rights>Copyright © 2006 John Wiley & Sons, Ltd.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3606-aa234e158a50666d9cefdeb7e878b667c251f2ab0e6995e175fb1ac07bcf362f3</citedby><cites>FETCH-LOGICAL-c3606-aa234e158a50666d9cefdeb7e878b667c251f2ab0e6995e175fb1ac07bcf362f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.736$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.736$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17983080$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsiao, Ling</creatorcontrib><creatorcontrib>Yu, Hongjun</creatorcontrib><title>Asymptotic stability of the relativistic Maxwellian</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>Global classical solutions near the relativistic Maxwellian are constructed for the relativistic Boltzmann equation in both a periodic box and the whole space. For both cases, we are able to get the non‐negativity of the global solution under less restriction than in (Publ. Res. Inst. Math. Sci. 1993; 29:301–347) on the scattering kernel. Copyright © 2006 John Wiley & Sons, Ltd.</description><subject>energy estimate</subject><subject>Exact sciences and technology</subject><subject>global classical solution</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>relativistic Boltzmann equation</subject><subject>Sciences and techniques of general use</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUh4MoOKf4L_SiHqTzJWmT9jiGTmGbCMpgl_CaJRht19l0bv3v7ejQk6d3eB8fPz5CLikMKAC7KwocSC6OSI9CmoY0kuKY9IBKCCNGo1Ny5v0HACSUsh7hQ98U67qsnQ58jZnLXd0EpQ3qdxNUJsfafTu__05xtzV57nB1Tk4s5t5cHG6fvD3cv44ew8nz-Gk0nISaCxAhIuORoXGCMQghlqk2dmkyaRKZZEJIzWJqGWZgRJrGhsrYZhQ1yExbLpjlfXLdeddV-bUxvlaF87rdgCtTbrxiaSwZCGjBmw7UVel9ZaxaV67AqlEU1D6KaqOoNkpLXh2U6DXmtsKVdv4Pl2nCIdkbbztu63LT_KdT0-mws4Yd3ZYyu18aq08lJJexms_Gir2IhZzPFmrEfwCdeH5-</recordid><startdate>20060910</startdate><enddate>20060910</enddate><creator>Hsiao, Ling</creator><creator>Yu, Hongjun</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><general>Teubner</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20060910</creationdate><title>Asymptotic stability of the relativistic Maxwellian</title><author>Hsiao, Ling ; Yu, Hongjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3606-aa234e158a50666d9cefdeb7e878b667c251f2ab0e6995e175fb1ac07bcf362f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>energy estimate</topic><topic>Exact sciences and technology</topic><topic>global classical solution</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>relativistic Boltzmann equation</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsiao, Ling</creatorcontrib><creatorcontrib>Yu, Hongjun</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsiao, Ling</au><au>Yu, Hongjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic stability of the relativistic Maxwellian</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2006-09-10</date><risdate>2006</risdate><volume>29</volume><issue>13</issue><spage>1481</spage><epage>1499</epage><pages>1481-1499</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>Global classical solutions near the relativistic Maxwellian are constructed for the relativistic Boltzmann equation in both a periodic box and the whole space. For both cases, we are able to get the non‐negativity of the global solution under less restriction than in (Publ. Res. Inst. Math. Sci. 1993; 29:301–347) on the scattering kernel. Copyright © 2006 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/mma.736</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2006-09, Vol.29 (13), p.1481-1499 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_miscellaneous_29572060 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | energy estimate Exact sciences and technology global classical solution Mathematical analysis Mathematics Partial differential equations relativistic Boltzmann equation Sciences and techniques of general use |
title | Asymptotic stability of the relativistic Maxwellian |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A36%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20stability%20of%20the%20relativistic%20Maxwellian&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Hsiao,%20Ling&rft.date=2006-09-10&rft.volume=29&rft.issue=13&rft.spage=1481&rft.epage=1499&rft.pages=1481-1499&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.736&rft_dat=%3Cproquest_cross%3E29572060%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29572060&rft_id=info:pmid/&rfr_iscdi=true |