Asymptotic stability of the relativistic Maxwellian

Global classical solutions near the relativistic Maxwellian are constructed for the relativistic Boltzmann equation in both a periodic box and the whole space. For both cases, we are able to get the non‐negativity of the global solution under less restriction than in (Publ. Res. Inst. Math. Sci. 199...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2006-09, Vol.29 (13), p.1481-1499
Hauptverfasser: Hsiao, Ling, Yu, Hongjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1499
container_issue 13
container_start_page 1481
container_title Mathematical methods in the applied sciences
container_volume 29
creator Hsiao, Ling
Yu, Hongjun
description Global classical solutions near the relativistic Maxwellian are constructed for the relativistic Boltzmann equation in both a periodic box and the whole space. For both cases, we are able to get the non‐negativity of the global solution under less restriction than in (Publ. Res. Inst. Math. Sci. 1993; 29:301–347) on the scattering kernel. Copyright © 2006 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.736
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29572060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29572060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3606-aa234e158a50666d9cefdeb7e878b667c251f2ab0e6995e175fb1ac07bcf362f3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4MoOKf4L_SiHqTzJWmT9jiGTmGbCMpgl_CaJRht19l0bv3v7ejQk6d3eB8fPz5CLikMKAC7KwocSC6OSI9CmoY0kuKY9IBKCCNGo1Ny5v0HACSUsh7hQ98U67qsnQ58jZnLXd0EpQ3qdxNUJsfafTu__05xtzV57nB1Tk4s5t5cHG6fvD3cv44ew8nz-Gk0nISaCxAhIuORoXGCMQghlqk2dmkyaRKZZEJIzWJqGWZgRJrGhsrYZhQ1yExbLpjlfXLdeddV-bUxvlaF87rdgCtTbrxiaSwZCGjBmw7UVel9ZaxaV67AqlEU1D6KaqOoNkpLXh2U6DXmtsKVdv4Pl2nCIdkbbztu63LT_KdT0-mws4Yd3ZYyu18aq08lJJexms_Gir2IhZzPFmrEfwCdeH5-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29572060</pqid></control><display><type>article</type><title>Asymptotic stability of the relativistic Maxwellian</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hsiao, Ling ; Yu, Hongjun</creator><creatorcontrib>Hsiao, Ling ; Yu, Hongjun</creatorcontrib><description>Global classical solutions near the relativistic Maxwellian are constructed for the relativistic Boltzmann equation in both a periodic box and the whole space. For both cases, we are able to get the non‐negativity of the global solution under less restriction than in (Publ. Res. Inst. Math. Sci. 1993; 29:301–347) on the scattering kernel. Copyright © 2006 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.736</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>energy estimate ; Exact sciences and technology ; global classical solution ; Mathematical analysis ; Mathematics ; Partial differential equations ; relativistic Boltzmann equation ; Sciences and techniques of general use</subject><ispartof>Mathematical methods in the applied sciences, 2006-09, Vol.29 (13), p.1481-1499</ispartof><rights>Copyright © 2006 John Wiley &amp; Sons, Ltd.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3606-aa234e158a50666d9cefdeb7e878b667c251f2ab0e6995e175fb1ac07bcf362f3</citedby><cites>FETCH-LOGICAL-c3606-aa234e158a50666d9cefdeb7e878b667c251f2ab0e6995e175fb1ac07bcf362f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.736$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.736$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17983080$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsiao, Ling</creatorcontrib><creatorcontrib>Yu, Hongjun</creatorcontrib><title>Asymptotic stability of the relativistic Maxwellian</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>Global classical solutions near the relativistic Maxwellian are constructed for the relativistic Boltzmann equation in both a periodic box and the whole space. For both cases, we are able to get the non‐negativity of the global solution under less restriction than in (Publ. Res. Inst. Math. Sci. 1993; 29:301–347) on the scattering kernel. Copyright © 2006 John Wiley &amp; Sons, Ltd.</description><subject>energy estimate</subject><subject>Exact sciences and technology</subject><subject>global classical solution</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>relativistic Boltzmann equation</subject><subject>Sciences and techniques of general use</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUh4MoOKf4L_SiHqTzJWmT9jiGTmGbCMpgl_CaJRht19l0bv3v7ejQk6d3eB8fPz5CLikMKAC7KwocSC6OSI9CmoY0kuKY9IBKCCNGo1Ny5v0HACSUsh7hQ98U67qsnQ58jZnLXd0EpQ3qdxNUJsfafTu__05xtzV57nB1Tk4s5t5cHG6fvD3cv44ew8nz-Gk0nISaCxAhIuORoXGCMQghlqk2dmkyaRKZZEJIzWJqGWZgRJrGhsrYZhQ1yExbLpjlfXLdeddV-bUxvlaF87rdgCtTbrxiaSwZCGjBmw7UVel9ZaxaV67AqlEU1D6KaqOoNkpLXh2U6DXmtsKVdv4Pl2nCIdkbbztu63LT_KdT0-mws4Yd3ZYyu18aq08lJJexms_Gir2IhZzPFmrEfwCdeH5-</recordid><startdate>20060910</startdate><enddate>20060910</enddate><creator>Hsiao, Ling</creator><creator>Yu, Hongjun</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><general>Teubner</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20060910</creationdate><title>Asymptotic stability of the relativistic Maxwellian</title><author>Hsiao, Ling ; Yu, Hongjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3606-aa234e158a50666d9cefdeb7e878b667c251f2ab0e6995e175fb1ac07bcf362f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>energy estimate</topic><topic>Exact sciences and technology</topic><topic>global classical solution</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>relativistic Boltzmann equation</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsiao, Ling</creatorcontrib><creatorcontrib>Yu, Hongjun</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsiao, Ling</au><au>Yu, Hongjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic stability of the relativistic Maxwellian</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2006-09-10</date><risdate>2006</risdate><volume>29</volume><issue>13</issue><spage>1481</spage><epage>1499</epage><pages>1481-1499</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>Global classical solutions near the relativistic Maxwellian are constructed for the relativistic Boltzmann equation in both a periodic box and the whole space. For both cases, we are able to get the non‐negativity of the global solution under less restriction than in (Publ. Res. Inst. Math. Sci. 1993; 29:301–347) on the scattering kernel. Copyright © 2006 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/mma.736</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2006-09, Vol.29 (13), p.1481-1499
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_miscellaneous_29572060
source Wiley Online Library Journals Frontfile Complete
subjects energy estimate
Exact sciences and technology
global classical solution
Mathematical analysis
Mathematics
Partial differential equations
relativistic Boltzmann equation
Sciences and techniques of general use
title Asymptotic stability of the relativistic Maxwellian
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A36%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20stability%20of%20the%20relativistic%20Maxwellian&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Hsiao,%20Ling&rft.date=2006-09-10&rft.volume=29&rft.issue=13&rft.spage=1481&rft.epage=1499&rft.pages=1481-1499&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.736&rft_dat=%3Cproquest_cross%3E29572060%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29572060&rft_id=info:pmid/&rfr_iscdi=true