Comprehensive Evaluation of 10 Docking Programs on a Diverse Set of Protein–Cyclic Peptide Complexes
Cyclic peptides have emerged as a highly promising class of therapeutic molecules owing to their favorable pharmacokinetic properties, including stability and permeability. Currently, many clinically approved cyclic peptides are derived from natural products or their derivatives, and the development...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2024-03, Vol.64 (6), p.2112-2124 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2124 |
---|---|
container_issue | 6 |
container_start_page | 2112 |
container_title | Journal of chemical information and modeling |
container_volume | 64 |
creator | Zhao, Huifeng Jiang, Dejun Shen, Chao Zhang, Jintu Zhang, Xujun Wang, Xiaorui Nie, Dou Hou, Tingjun Kang, Yu |
description | Cyclic peptides have emerged as a highly promising class of therapeutic molecules owing to their favorable pharmacokinetic properties, including stability and permeability. Currently, many clinically approved cyclic peptides are derived from natural products or their derivatives, and the development of molecular docking techniques for cyclic peptide discovery holds great promise for expanding the applications and potential of this class of molecules. Given the availability of numerous docking programs, there is a pressing need for a systematic evaluation of their performance, specifically on protein–cyclic peptide systems. In this study, we constructed an extensive benchmark data set called CPSet, consisting of 493 protein–cyclic peptide complexes. Based on this data set, we conducted a comprehensive evaluation of 10 docking programs, including Rosetta, AutoDock CrankPep, and eight protein-small molecule docking programs (i.e., AutoDock, AudoDock Vina, Glide, GOLD, LeDock, rDock, MOE, and Surflex). The evaluation encompassed the assessment of the sampling power, docking power, and scoring power of these programs. The results revealed that all of the tested protein-small molecule docking programs successfully sampled the binding conformations when using the crystal conformations as the initial structures. Among them, rDock exhibited outstanding performance, achieving a remarkable 94.3% top-100 sampling success rate. However, few programs achieved successful predictions of the binding conformations using tLEaP-generated conformations as the initial structures. Within this scheme, AutoDock CrankPep yielded the highest top-100 sampling success rate of 29.6%. Rosetta’s scoring function outperformed the others in selecting optimal conformations, resulting in an impressive top-1 docking success rate of 87.6%. Nevertheless, all the tested scoring functions displayed limited performance in predicting binding affinity, with MOE@Affinity dG exhibiting the highest Pearson’s correlation coefficient of 0.378. It is therefore suggested to use an appropriate combination of different docking programs for given tasks in real applications. We expect that this work will offer valuable insights into selecting the appropriate docking programs for protein–cyclic peptide complexes. |
doi_str_mv | 10.1021/acs.jcim.3c01921 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2957167626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957167626</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-20f45e53e80fb4dfc7ce7f310583fc8abd7629f41f5cc2264f2bbdfefb97a8b83</originalsourceid><addsrcrecordid>eNp1kctKAzEUhoMo3veuJODGha25zCVZSusNBAUV3A2ZzImmzkxqMiO68x18Q5_E1LYuBFcJnO__csiP0B4lQ0oYPVY6DCfaNkOuCZWMrqBNmiZyIDPysLq8pzLbQFshTAjhXGZsHW1wkQjOErmJzMg1Uw9P0Ab7Cvj0VdW96qxrsTOYEjx2-tm2j_jGu0evmoDjROFxZH0AfAvdjIvDDmz79fE5ete11fgGpp2tAM_kNbxB2EFrRtUBdhfnNro_O70bXQyurs8vRydXA8Vp3g0YMUkKKQdBTJlURucacsMpSQU3WqiyyjMmTUJNqjVjWWJYWVYGTClzJUrBt9Hh3Dv17qWH0BWNDRrqWrXg-lAwmeY0i5Isogd_0InrfRu3i5TIqKB5wiNF5pT2LgQPpph62yj_XlBSzDooYgfFrINi0UGM7C_EfdlA9RtYfnoEjubAT3T56L--bySglCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2986181743</pqid></control><display><type>article</type><title>Comprehensive Evaluation of 10 Docking Programs on a Diverse Set of Protein–Cyclic Peptide Complexes</title><source>MEDLINE</source><source>ACS Publications</source><creator>Zhao, Huifeng ; Jiang, Dejun ; Shen, Chao ; Zhang, Jintu ; Zhang, Xujun ; Wang, Xiaorui ; Nie, Dou ; Hou, Tingjun ; Kang, Yu</creator><creatorcontrib>Zhao, Huifeng ; Jiang, Dejun ; Shen, Chao ; Zhang, Jintu ; Zhang, Xujun ; Wang, Xiaorui ; Nie, Dou ; Hou, Tingjun ; Kang, Yu</creatorcontrib><description>Cyclic peptides have emerged as a highly promising class of therapeutic molecules owing to their favorable pharmacokinetic properties, including stability and permeability. Currently, many clinically approved cyclic peptides are derived from natural products or their derivatives, and the development of molecular docking techniques for cyclic peptide discovery holds great promise for expanding the applications and potential of this class of molecules. Given the availability of numerous docking programs, there is a pressing need for a systematic evaluation of their performance, specifically on protein–cyclic peptide systems. In this study, we constructed an extensive benchmark data set called CPSet, consisting of 493 protein–cyclic peptide complexes. Based on this data set, we conducted a comprehensive evaluation of 10 docking programs, including Rosetta, AutoDock CrankPep, and eight protein-small molecule docking programs (i.e., AutoDock, AudoDock Vina, Glide, GOLD, LeDock, rDock, MOE, and Surflex). The evaluation encompassed the assessment of the sampling power, docking power, and scoring power of these programs. The results revealed that all of the tested protein-small molecule docking programs successfully sampled the binding conformations when using the crystal conformations as the initial structures. Among them, rDock exhibited outstanding performance, achieving a remarkable 94.3% top-100 sampling success rate. However, few programs achieved successful predictions of the binding conformations using tLEaP-generated conformations as the initial structures. Within this scheme, AutoDock CrankPep yielded the highest top-100 sampling success rate of 29.6%. Rosetta’s scoring function outperformed the others in selecting optimal conformations, resulting in an impressive top-1 docking success rate of 87.6%. Nevertheless, all the tested scoring functions displayed limited performance in predicting binding affinity, with MOE@Affinity dG exhibiting the highest Pearson’s correlation coefficient of 0.378. It is therefore suggested to use an appropriate combination of different docking programs for given tasks in real applications. We expect that this work will offer valuable insights into selecting the appropriate docking programs for protein–cyclic peptide complexes.</description><identifier>ISSN: 1549-9596</identifier><identifier>ISSN: 1549-960X</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.3c01921</identifier><identifier>PMID: 38483249</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Affinity ; Binding ; Correlation coefficients ; Datasets ; Ligands ; Molecular Conformation ; Molecular docking ; Molecular Docking Simulation ; Natural products ; Peptides ; Peptides, Cyclic - metabolism ; Performance evaluation ; Performance prediction ; Pharmaceutical Modeling ; Protein Binding ; Proteins ; Proteins - chemistry ; Sampling ; Success</subject><ispartof>Journal of chemical information and modeling, 2024-03, Vol.64 (6), p.2112-2124</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Mar 25, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a317t-20f45e53e80fb4dfc7ce7f310583fc8abd7629f41f5cc2264f2bbdfefb97a8b83</cites><orcidid>0000-0001-9580-3241 ; 0000-0001-7227-2580 ; 0000-0002-0999-8802 ; 0000-0003-2783-5529 ; 0000-0001-6893-2013 ; 0000-0002-2035-5074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.3c01921$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.3c01921$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38483249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Huifeng</creatorcontrib><creatorcontrib>Jiang, Dejun</creatorcontrib><creatorcontrib>Shen, Chao</creatorcontrib><creatorcontrib>Zhang, Jintu</creatorcontrib><creatorcontrib>Zhang, Xujun</creatorcontrib><creatorcontrib>Wang, Xiaorui</creatorcontrib><creatorcontrib>Nie, Dou</creatorcontrib><creatorcontrib>Hou, Tingjun</creatorcontrib><creatorcontrib>Kang, Yu</creatorcontrib><title>Comprehensive Evaluation of 10 Docking Programs on a Diverse Set of Protein–Cyclic Peptide Complexes</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Cyclic peptides have emerged as a highly promising class of therapeutic molecules owing to their favorable pharmacokinetic properties, including stability and permeability. Currently, many clinically approved cyclic peptides are derived from natural products or their derivatives, and the development of molecular docking techniques for cyclic peptide discovery holds great promise for expanding the applications and potential of this class of molecules. Given the availability of numerous docking programs, there is a pressing need for a systematic evaluation of their performance, specifically on protein–cyclic peptide systems. In this study, we constructed an extensive benchmark data set called CPSet, consisting of 493 protein–cyclic peptide complexes. Based on this data set, we conducted a comprehensive evaluation of 10 docking programs, including Rosetta, AutoDock CrankPep, and eight protein-small molecule docking programs (i.e., AutoDock, AudoDock Vina, Glide, GOLD, LeDock, rDock, MOE, and Surflex). The evaluation encompassed the assessment of the sampling power, docking power, and scoring power of these programs. The results revealed that all of the tested protein-small molecule docking programs successfully sampled the binding conformations when using the crystal conformations as the initial structures. Among them, rDock exhibited outstanding performance, achieving a remarkable 94.3% top-100 sampling success rate. However, few programs achieved successful predictions of the binding conformations using tLEaP-generated conformations as the initial structures. Within this scheme, AutoDock CrankPep yielded the highest top-100 sampling success rate of 29.6%. Rosetta’s scoring function outperformed the others in selecting optimal conformations, resulting in an impressive top-1 docking success rate of 87.6%. Nevertheless, all the tested scoring functions displayed limited performance in predicting binding affinity, with MOE@Affinity dG exhibiting the highest Pearson’s correlation coefficient of 0.378. It is therefore suggested to use an appropriate combination of different docking programs for given tasks in real applications. We expect that this work will offer valuable insights into selecting the appropriate docking programs for protein–cyclic peptide complexes.</description><subject>Affinity</subject><subject>Binding</subject><subject>Correlation coefficients</subject><subject>Datasets</subject><subject>Ligands</subject><subject>Molecular Conformation</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Natural products</subject><subject>Peptides</subject><subject>Peptides, Cyclic - metabolism</subject><subject>Performance evaluation</subject><subject>Performance prediction</subject><subject>Pharmaceutical Modeling</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Sampling</subject><subject>Success</subject><issn>1549-9596</issn><issn>1549-960X</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctKAzEUhoMo3veuJODGha25zCVZSusNBAUV3A2ZzImmzkxqMiO68x18Q5_E1LYuBFcJnO__csiP0B4lQ0oYPVY6DCfaNkOuCZWMrqBNmiZyIDPysLq8pzLbQFshTAjhXGZsHW1wkQjOErmJzMg1Uw9P0Ab7Cvj0VdW96qxrsTOYEjx2-tm2j_jGu0evmoDjROFxZH0AfAvdjIvDDmz79fE5ete11fgGpp2tAM_kNbxB2EFrRtUBdhfnNro_O70bXQyurs8vRydXA8Vp3g0YMUkKKQdBTJlURucacsMpSQU3WqiyyjMmTUJNqjVjWWJYWVYGTClzJUrBt9Hh3Dv17qWH0BWNDRrqWrXg-lAwmeY0i5Isogd_0InrfRu3i5TIqKB5wiNF5pT2LgQPpph62yj_XlBSzDooYgfFrINi0UGM7C_EfdlA9RtYfnoEjubAT3T56L--bySglCs</recordid><startdate>20240325</startdate><enddate>20240325</enddate><creator>Zhao, Huifeng</creator><creator>Jiang, Dejun</creator><creator>Shen, Chao</creator><creator>Zhang, Jintu</creator><creator>Zhang, Xujun</creator><creator>Wang, Xiaorui</creator><creator>Nie, Dou</creator><creator>Hou, Tingjun</creator><creator>Kang, Yu</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9580-3241</orcidid><orcidid>https://orcid.org/0000-0001-7227-2580</orcidid><orcidid>https://orcid.org/0000-0002-0999-8802</orcidid><orcidid>https://orcid.org/0000-0003-2783-5529</orcidid><orcidid>https://orcid.org/0000-0001-6893-2013</orcidid><orcidid>https://orcid.org/0000-0002-2035-5074</orcidid></search><sort><creationdate>20240325</creationdate><title>Comprehensive Evaluation of 10 Docking Programs on a Diverse Set of Protein–Cyclic Peptide Complexes</title><author>Zhao, Huifeng ; Jiang, Dejun ; Shen, Chao ; Zhang, Jintu ; Zhang, Xujun ; Wang, Xiaorui ; Nie, Dou ; Hou, Tingjun ; Kang, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-20f45e53e80fb4dfc7ce7f310583fc8abd7629f41f5cc2264f2bbdfefb97a8b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Affinity</topic><topic>Binding</topic><topic>Correlation coefficients</topic><topic>Datasets</topic><topic>Ligands</topic><topic>Molecular Conformation</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Natural products</topic><topic>Peptides</topic><topic>Peptides, Cyclic - metabolism</topic><topic>Performance evaluation</topic><topic>Performance prediction</topic><topic>Pharmaceutical Modeling</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Sampling</topic><topic>Success</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Huifeng</creatorcontrib><creatorcontrib>Jiang, Dejun</creatorcontrib><creatorcontrib>Shen, Chao</creatorcontrib><creatorcontrib>Zhang, Jintu</creatorcontrib><creatorcontrib>Zhang, Xujun</creatorcontrib><creatorcontrib>Wang, Xiaorui</creatorcontrib><creatorcontrib>Nie, Dou</creatorcontrib><creatorcontrib>Hou, Tingjun</creatorcontrib><creatorcontrib>Kang, Yu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Huifeng</au><au>Jiang, Dejun</au><au>Shen, Chao</au><au>Zhang, Jintu</au><au>Zhang, Xujun</au><au>Wang, Xiaorui</au><au>Nie, Dou</au><au>Hou, Tingjun</au><au>Kang, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Evaluation of 10 Docking Programs on a Diverse Set of Protein–Cyclic Peptide Complexes</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2024-03-25</date><risdate>2024</risdate><volume>64</volume><issue>6</issue><spage>2112</spage><epage>2124</epage><pages>2112-2124</pages><issn>1549-9596</issn><issn>1549-960X</issn><eissn>1549-960X</eissn><abstract>Cyclic peptides have emerged as a highly promising class of therapeutic molecules owing to their favorable pharmacokinetic properties, including stability and permeability. Currently, many clinically approved cyclic peptides are derived from natural products or their derivatives, and the development of molecular docking techniques for cyclic peptide discovery holds great promise for expanding the applications and potential of this class of molecules. Given the availability of numerous docking programs, there is a pressing need for a systematic evaluation of their performance, specifically on protein–cyclic peptide systems. In this study, we constructed an extensive benchmark data set called CPSet, consisting of 493 protein–cyclic peptide complexes. Based on this data set, we conducted a comprehensive evaluation of 10 docking programs, including Rosetta, AutoDock CrankPep, and eight protein-small molecule docking programs (i.e., AutoDock, AudoDock Vina, Glide, GOLD, LeDock, rDock, MOE, and Surflex). The evaluation encompassed the assessment of the sampling power, docking power, and scoring power of these programs. The results revealed that all of the tested protein-small molecule docking programs successfully sampled the binding conformations when using the crystal conformations as the initial structures. Among them, rDock exhibited outstanding performance, achieving a remarkable 94.3% top-100 sampling success rate. However, few programs achieved successful predictions of the binding conformations using tLEaP-generated conformations as the initial structures. Within this scheme, AutoDock CrankPep yielded the highest top-100 sampling success rate of 29.6%. Rosetta’s scoring function outperformed the others in selecting optimal conformations, resulting in an impressive top-1 docking success rate of 87.6%. Nevertheless, all the tested scoring functions displayed limited performance in predicting binding affinity, with MOE@Affinity dG exhibiting the highest Pearson’s correlation coefficient of 0.378. It is therefore suggested to use an appropriate combination of different docking programs for given tasks in real applications. We expect that this work will offer valuable insights into selecting the appropriate docking programs for protein–cyclic peptide complexes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38483249</pmid><doi>10.1021/acs.jcim.3c01921</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9580-3241</orcidid><orcidid>https://orcid.org/0000-0001-7227-2580</orcidid><orcidid>https://orcid.org/0000-0002-0999-8802</orcidid><orcidid>https://orcid.org/0000-0003-2783-5529</orcidid><orcidid>https://orcid.org/0000-0001-6893-2013</orcidid><orcidid>https://orcid.org/0000-0002-2035-5074</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2024-03, Vol.64 (6), p.2112-2124 |
issn | 1549-9596 1549-960X 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_2957167626 |
source | MEDLINE; ACS Publications |
subjects | Affinity Binding Correlation coefficients Datasets Ligands Molecular Conformation Molecular docking Molecular Docking Simulation Natural products Peptides Peptides, Cyclic - metabolism Performance evaluation Performance prediction Pharmaceutical Modeling Protein Binding Proteins Proteins - chemistry Sampling Success |
title | Comprehensive Evaluation of 10 Docking Programs on a Diverse Set of Protein–Cyclic Peptide Complexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A08%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Evaluation%20of%2010%20Docking%20Programs%20on%20a%20Diverse%20Set%20of%20Protein%E2%80%93Cyclic%20Peptide%20Complexes&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Zhao,%20Huifeng&rft.date=2024-03-25&rft.volume=64&rft.issue=6&rft.spage=2112&rft.epage=2124&rft.pages=2112-2124&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.3c01921&rft_dat=%3Cproquest_cross%3E2957167626%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2986181743&rft_id=info:pmid/38483249&rfr_iscdi=true |