Proximity Effects on the Reactivity of a Nonheme Iron (IV) Oxo Complex in C−H Oxidation
Precise control of substrate positioning and orientation (its proximity to the reactive unit) is often invoked to rationalize the superior enzymatic reaction rates and selectivities when compared to synthetic models. Artificial nonheme iron (IV) oxo (Fe(IV)=O) complexes react with C(sp3)−H bonds via...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2024-05, Vol.63 (21), p.e202401694-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 21 |
container_start_page | e202401694 |
container_title | Angewandte Chemie International Edition |
container_volume | 63 |
creator | Fagnano, Alessandro Frateloreto, Federico Paoloni, Roberta Sappino, Carla Lanzalunga, Osvaldo Costas, Miquel Di Stefano, Stefano Olivo, Giorgio |
description | Precise control of substrate positioning and orientation (its proximity to the reactive unit) is often invoked to rationalize the superior enzymatic reaction rates and selectivities when compared to synthetic models. Artificial nonheme iron (IV) oxo (Fe(IV)=O) complexes react with C(sp3)−H bonds via a biomimetic Hydrogen Atom Transfer/Hydroxyl Rebound mechanism, but rates, site‐selectivity and even hydroxyl rebound efficiency (ligand rebound versus substrate radical diffusion) are smaller than in oxygenases. Herein, we quantitatively analyze how substrate binding modulates nonheme Fe(IV)=O reactivity by comparing rates and outcomes of C−H oxidation by a pair of Fe(IV)=O complexes that share the same first coordination sphere but only one contains a crown ether receptor that recognizes the substrate. Substrate binding makes the reaction intramolecular, exhibiting Michaelis–Menten kinetics and increased reaction rates. In addition, C−H oxidation occurs with high site selectivity for remote sites. Analysis of Effective Molarity reveals that the system operates at its maximal theoretical capability for the oxidation of these remote sites. Remarkably, substrate positioning also affects Hydroxyl Rebound, whose efficiency only increases on the sites placed in proximity by recognition. Overall, these observations provide evidence that supramolecular control of substrate positioning can effectively modulate the reactivity of oxygenases and its models.
We report evidence that supramolecular substrate binding increases several aspects of iron (IV) oxo (Fe(IV)=O) reactivity not only in nonheme oxygenases but also in synthetic models. Recognition‐induced proximity of certain substrate C−H bonds increases both rate and selectivity for their C−H ion, analyzed by Effective Molarity, and increases the efficiency of subsequent Oxygen Rebound, as exclusively observed in enzymes. |
doi_str_mv | 10.1002/anie.202401694 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2957164634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053984180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3284-dc33ccdcfdd03a98dd81a5ac801f54a39053c43f895bf28404ec4638e4f5b59a3</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMo1r-tSwm4qYupySTpJMtSqi2UVkQFVyHNJJgyM6mTqbZv4NpH9ElMqT_gxtW93Pudcy8HgFOMOhih9FJVznRSlFKEu4LugAPMUpyQLCO7saeEJBlnuAUOQ5hHnnPU3QctwmnGMyIOwONN7VeudM0aDqw1ugnQV7B5MvDWKN24l83GW6jgxFdPpjRwVEegPXq4gNOVh31fLgqzgq6C_Y-392Eculw1zlfHYM-qIpiTr3oE7q8Gd_1hMp5ej_q9caJJymmSa0K0zrXNc0SU4HnOsWJKc4Qto4oIxIimxHLBZjYKEDWadgk31LIZE4ocgfbWd1H756UJjSxd0KYoVGX8MshUsAx3o4RG9PwPOvfLuorfSRLPCE4xR5HqbCld-xBqY-WidqWq1xIjuQldbkKXP6FHwdmX7XJWmvwH_045AmILvLrCrP-xk73JaPBr_gmpmY0d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053984180</pqid></control><display><type>article</type><title>Proximity Effects on the Reactivity of a Nonheme Iron (IV) Oxo Complex in C−H Oxidation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fagnano, Alessandro ; Frateloreto, Federico ; Paoloni, Roberta ; Sappino, Carla ; Lanzalunga, Osvaldo ; Costas, Miquel ; Di Stefano, Stefano ; Olivo, Giorgio</creator><creatorcontrib>Fagnano, Alessandro ; Frateloreto, Federico ; Paoloni, Roberta ; Sappino, Carla ; Lanzalunga, Osvaldo ; Costas, Miquel ; Di Stefano, Stefano ; Olivo, Giorgio</creatorcontrib><description>Precise control of substrate positioning and orientation (its proximity to the reactive unit) is often invoked to rationalize the superior enzymatic reaction rates and selectivities when compared to synthetic models. Artificial nonheme iron (IV) oxo (Fe(IV)=O) complexes react with C(sp3)−H bonds via a biomimetic Hydrogen Atom Transfer/Hydroxyl Rebound mechanism, but rates, site‐selectivity and even hydroxyl rebound efficiency (ligand rebound versus substrate radical diffusion) are smaller than in oxygenases. Herein, we quantitatively analyze how substrate binding modulates nonheme Fe(IV)=O reactivity by comparing rates and outcomes of C−H oxidation by a pair of Fe(IV)=O complexes that share the same first coordination sphere but only one contains a crown ether receptor that recognizes the substrate. Substrate binding makes the reaction intramolecular, exhibiting Michaelis–Menten kinetics and increased reaction rates. In addition, C−H oxidation occurs with high site selectivity for remote sites. Analysis of Effective Molarity reveals that the system operates at its maximal theoretical capability for the oxidation of these remote sites. Remarkably, substrate positioning also affects Hydroxyl Rebound, whose efficiency only increases on the sites placed in proximity by recognition. Overall, these observations provide evidence that supramolecular control of substrate positioning can effectively modulate the reactivity of oxygenases and its models.
We report evidence that supramolecular substrate binding increases several aspects of iron (IV) oxo (Fe(IV)=O) reactivity not only in nonheme oxygenases but also in synthetic models. Recognition‐induced proximity of certain substrate C−H bonds increases both rate and selectivity for their C−H ion, analyzed by Effective Molarity, and increases the efficiency of subsequent Oxygen Rebound, as exclusively observed in enzymes.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202401694</identifier><identifier>PMID: 38478739</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Binding ; Biomimetics ; Crown ethers ; Hydrogen atoms ; Iron ; molecular recognition ; nonheme iron ; Oxidation ; physical organic chemistry ; Proximity ; rebound ; Substrates ; supramolecular chemistry</subject><ispartof>Angewandte Chemie International Edition, 2024-05, Vol.63 (21), p.e202401694-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3284-dc33ccdcfdd03a98dd81a5ac801f54a39053c43f895bf28404ec4638e4f5b59a3</cites><orcidid>0000-0003-4053-7673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202401694$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202401694$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38478739$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fagnano, Alessandro</creatorcontrib><creatorcontrib>Frateloreto, Federico</creatorcontrib><creatorcontrib>Paoloni, Roberta</creatorcontrib><creatorcontrib>Sappino, Carla</creatorcontrib><creatorcontrib>Lanzalunga, Osvaldo</creatorcontrib><creatorcontrib>Costas, Miquel</creatorcontrib><creatorcontrib>Di Stefano, Stefano</creatorcontrib><creatorcontrib>Olivo, Giorgio</creatorcontrib><title>Proximity Effects on the Reactivity of a Nonheme Iron (IV) Oxo Complex in C−H Oxidation</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Precise control of substrate positioning and orientation (its proximity to the reactive unit) is often invoked to rationalize the superior enzymatic reaction rates and selectivities when compared to synthetic models. Artificial nonheme iron (IV) oxo (Fe(IV)=O) complexes react with C(sp3)−H bonds via a biomimetic Hydrogen Atom Transfer/Hydroxyl Rebound mechanism, but rates, site‐selectivity and even hydroxyl rebound efficiency (ligand rebound versus substrate radical diffusion) are smaller than in oxygenases. Herein, we quantitatively analyze how substrate binding modulates nonheme Fe(IV)=O reactivity by comparing rates and outcomes of C−H oxidation by a pair of Fe(IV)=O complexes that share the same first coordination sphere but only one contains a crown ether receptor that recognizes the substrate. Substrate binding makes the reaction intramolecular, exhibiting Michaelis–Menten kinetics and increased reaction rates. In addition, C−H oxidation occurs with high site selectivity for remote sites. Analysis of Effective Molarity reveals that the system operates at its maximal theoretical capability for the oxidation of these remote sites. Remarkably, substrate positioning also affects Hydroxyl Rebound, whose efficiency only increases on the sites placed in proximity by recognition. Overall, these observations provide evidence that supramolecular control of substrate positioning can effectively modulate the reactivity of oxygenases and its models.
We report evidence that supramolecular substrate binding increases several aspects of iron (IV) oxo (Fe(IV)=O) reactivity not only in nonheme oxygenases but also in synthetic models. Recognition‐induced proximity of certain substrate C−H bonds increases both rate and selectivity for their C−H ion, analyzed by Effective Molarity, and increases the efficiency of subsequent Oxygen Rebound, as exclusively observed in enzymes.</description><subject>Binding</subject><subject>Biomimetics</subject><subject>Crown ethers</subject><subject>Hydrogen atoms</subject><subject>Iron</subject><subject>molecular recognition</subject><subject>nonheme iron</subject><subject>Oxidation</subject><subject>physical organic chemistry</subject><subject>Proximity</subject><subject>rebound</subject><subject>Substrates</subject><subject>supramolecular chemistry</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMo1r-tSwm4qYupySTpJMtSqi2UVkQFVyHNJJgyM6mTqbZv4NpH9ElMqT_gxtW93Pudcy8HgFOMOhih9FJVznRSlFKEu4LugAPMUpyQLCO7saeEJBlnuAUOQ5hHnnPU3QctwmnGMyIOwONN7VeudM0aDqw1ugnQV7B5MvDWKN24l83GW6jgxFdPpjRwVEegPXq4gNOVh31fLgqzgq6C_Y-392Eculw1zlfHYM-qIpiTr3oE7q8Gd_1hMp5ej_q9caJJymmSa0K0zrXNc0SU4HnOsWJKc4Qto4oIxIimxHLBZjYKEDWadgk31LIZE4ocgfbWd1H756UJjSxd0KYoVGX8MshUsAx3o4RG9PwPOvfLuorfSRLPCE4xR5HqbCld-xBqY-WidqWq1xIjuQldbkKXP6FHwdmX7XJWmvwH_045AmILvLrCrP-xk73JaPBr_gmpmY0d</recordid><startdate>20240521</startdate><enddate>20240521</enddate><creator>Fagnano, Alessandro</creator><creator>Frateloreto, Federico</creator><creator>Paoloni, Roberta</creator><creator>Sappino, Carla</creator><creator>Lanzalunga, Osvaldo</creator><creator>Costas, Miquel</creator><creator>Di Stefano, Stefano</creator><creator>Olivo, Giorgio</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4053-7673</orcidid></search><sort><creationdate>20240521</creationdate><title>Proximity Effects on the Reactivity of a Nonheme Iron (IV) Oxo Complex in C−H Oxidation</title><author>Fagnano, Alessandro ; Frateloreto, Federico ; Paoloni, Roberta ; Sappino, Carla ; Lanzalunga, Osvaldo ; Costas, Miquel ; Di Stefano, Stefano ; Olivo, Giorgio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3284-dc33ccdcfdd03a98dd81a5ac801f54a39053c43f895bf28404ec4638e4f5b59a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binding</topic><topic>Biomimetics</topic><topic>Crown ethers</topic><topic>Hydrogen atoms</topic><topic>Iron</topic><topic>molecular recognition</topic><topic>nonheme iron</topic><topic>Oxidation</topic><topic>physical organic chemistry</topic><topic>Proximity</topic><topic>rebound</topic><topic>Substrates</topic><topic>supramolecular chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fagnano, Alessandro</creatorcontrib><creatorcontrib>Frateloreto, Federico</creatorcontrib><creatorcontrib>Paoloni, Roberta</creatorcontrib><creatorcontrib>Sappino, Carla</creatorcontrib><creatorcontrib>Lanzalunga, Osvaldo</creatorcontrib><creatorcontrib>Costas, Miquel</creatorcontrib><creatorcontrib>Di Stefano, Stefano</creatorcontrib><creatorcontrib>Olivo, Giorgio</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fagnano, Alessandro</au><au>Frateloreto, Federico</au><au>Paoloni, Roberta</au><au>Sappino, Carla</au><au>Lanzalunga, Osvaldo</au><au>Costas, Miquel</au><au>Di Stefano, Stefano</au><au>Olivo, Giorgio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proximity Effects on the Reactivity of a Nonheme Iron (IV) Oxo Complex in C−H Oxidation</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-05-21</date><risdate>2024</risdate><volume>63</volume><issue>21</issue><spage>e202401694</spage><epage>n/a</epage><pages>e202401694-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Precise control of substrate positioning and orientation (its proximity to the reactive unit) is often invoked to rationalize the superior enzymatic reaction rates and selectivities when compared to synthetic models. Artificial nonheme iron (IV) oxo (Fe(IV)=O) complexes react with C(sp3)−H bonds via a biomimetic Hydrogen Atom Transfer/Hydroxyl Rebound mechanism, but rates, site‐selectivity and even hydroxyl rebound efficiency (ligand rebound versus substrate radical diffusion) are smaller than in oxygenases. Herein, we quantitatively analyze how substrate binding modulates nonheme Fe(IV)=O reactivity by comparing rates and outcomes of C−H oxidation by a pair of Fe(IV)=O complexes that share the same first coordination sphere but only one contains a crown ether receptor that recognizes the substrate. Substrate binding makes the reaction intramolecular, exhibiting Michaelis–Menten kinetics and increased reaction rates. In addition, C−H oxidation occurs with high site selectivity for remote sites. Analysis of Effective Molarity reveals that the system operates at its maximal theoretical capability for the oxidation of these remote sites. Remarkably, substrate positioning also affects Hydroxyl Rebound, whose efficiency only increases on the sites placed in proximity by recognition. Overall, these observations provide evidence that supramolecular control of substrate positioning can effectively modulate the reactivity of oxygenases and its models.
We report evidence that supramolecular substrate binding increases several aspects of iron (IV) oxo (Fe(IV)=O) reactivity not only in nonheme oxygenases but also in synthetic models. Recognition‐induced proximity of certain substrate C−H bonds increases both rate and selectivity for their C−H ion, analyzed by Effective Molarity, and increases the efficiency of subsequent Oxygen Rebound, as exclusively observed in enzymes.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38478739</pmid><doi>10.1002/anie.202401694</doi><tpages>10</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4053-7673</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2024-05, Vol.63 (21), p.e202401694-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2957164634 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Binding Biomimetics Crown ethers Hydrogen atoms Iron molecular recognition nonheme iron Oxidation physical organic chemistry Proximity rebound Substrates supramolecular chemistry |
title | Proximity Effects on the Reactivity of a Nonheme Iron (IV) Oxo Complex in C−H Oxidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proximity%20Effects%20on%20the%20Reactivity%20of%20a%20Nonheme%20Iron%20(IV)%20Oxo%20Complex%20in%20C%E2%88%92H%20Oxidation&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Fagnano,%20Alessandro&rft.date=2024-05-21&rft.volume=63&rft.issue=21&rft.spage=e202401694&rft.epage=n/a&rft.pages=e202401694-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202401694&rft_dat=%3Cproquest_cross%3E3053984180%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053984180&rft_id=info:pmid/38478739&rfr_iscdi=true |