Heterogeneity in crash data: A cross comparison between ordered probability model and its variant using crashes at suburban type arterial

•Evaluation of the injury severity of police-reported crashes on suburban type roadways (STRs) in Ohio.•Ordered heterogeneity models are estimated to account for unobserved heterogeneity in the crash data.•Heterogeneity models show a superior fit than a fixed parameters model in crash data.•Rear-end...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Accident analysis and prevention 2024-06, Vol.200, p.107524-107524, Article 107524
Hauptverfasser: Khanal, Bedan, Zahertar, Anahita, Lavrenz, Steven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 107524
container_issue
container_start_page 107524
container_title Accident analysis and prevention
container_volume 200
creator Khanal, Bedan
Zahertar, Anahita
Lavrenz, Steven
description •Evaluation of the injury severity of police-reported crashes on suburban type roadways (STRs) in Ohio.•Ordered heterogeneity models are estimated to account for unobserved heterogeneity in the crash data.•Heterogeneity models show a superior fit than a fixed parameters model in crash data.•Rear-end crashes were the most frequent, and head-on crashes were the least frequent crash type. Transportation researchers have long been using the statistical analysis of traffic crash data to create a proactive awareness of traffic safety, make important decisions about the design of vehicles and highways, and develop and implement safe preventive strategies to improve safety. Despite significant progress toward maintaining and analyzing traffic crash data, researchers still encounter several challenges and methodological barriers when conducting statistical analysis. One of these challenges is dealing with the issue of unobserved heterogeneity in crash data. This study uses state-of-the-art methodologies to model the injury severity of traffic crashes that occurred on a specific road segment, namely, a suburban-type road (STR), simultaneously addressing issues related to unobserved heterogeneity in data. Multiple heterogeneity ordered probit models are evaluated against Ohio crash data from the Highway Safety Information System (HSIS). The findings reveal the heterogeneous nature of some variables, such as the nighttime indicator, and demonstrate the distinctive feature of each model to capture the effect of unobserved heterogeneity in analyzing data with such variables. Furthermore, the result helps comprehend the contextual scenarios of crashes at STRs and formulate practical plans to lower the severity of such crashes.
doi_str_mv 10.1016/j.aap.2024.107524
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2956683456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0001457524000691</els_id><sourcerecordid>2956683456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-65760f319bb128abacd5ef7b20c84fd6901305385658e1c947c95dfb10bcb17d3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS1ERZfCD-CCfOSSxU7iOIFTVQFFqtRLe7bG9qR4ldjBdlrtT-Bf4yWFI6fRk773NDOPkHec7Tnj3cfDHmDZ16xui5aibl-QHe_lUNVMyJdkxxjjVSukOCevUzoUKXspXpHzpm8lrxuxI7-uMWMMD-jR5SN1npoI6Qe1kOETvSwqpERNmBeILgVPNeYnRE9DtBjR0iUGDdpNJ_ccLE4UvKUuJ_pYHOAzXZPzD1ssJgqZplWvUYOn-bgghVgWcDC9IWcjTAnfPs8Lcv_1y93VdXVz--371eVNZRomctUJ2bGx4YPWvO5Bg7ECR6lrZvp2tN3AeOGaXnSiR26GVppB2FFzpo3m0jYX5MOWWzb_uWLKanbJ4DSBx7AmVQ-i6_qmFV1B-Yb--ULEUS3RzRCPijN1akAdVGlAnRpQWwPF8_45ftUz2n-Ovy8vwOcNwHLko8OoknHoDVoX0WRlg_tP_G_ah5i4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956683456</pqid></control><display><type>article</type><title>Heterogeneity in crash data: A cross comparison between ordered probability model and its variant using crashes at suburban type arterial</title><source>Elsevier ScienceDirect Journals</source><creator>Khanal, Bedan ; Zahertar, Anahita ; Lavrenz, Steven</creator><creatorcontrib>Khanal, Bedan ; Zahertar, Anahita ; Lavrenz, Steven</creatorcontrib><description>•Evaluation of the injury severity of police-reported crashes on suburban type roadways (STRs) in Ohio.•Ordered heterogeneity models are estimated to account for unobserved heterogeneity in the crash data.•Heterogeneity models show a superior fit than a fixed parameters model in crash data.•Rear-end crashes were the most frequent, and head-on crashes were the least frequent crash type. Transportation researchers have long been using the statistical analysis of traffic crash data to create a proactive awareness of traffic safety, make important decisions about the design of vehicles and highways, and develop and implement safe preventive strategies to improve safety. Despite significant progress toward maintaining and analyzing traffic crash data, researchers still encounter several challenges and methodological barriers when conducting statistical analysis. One of these challenges is dealing with the issue of unobserved heterogeneity in crash data. This study uses state-of-the-art methodologies to model the injury severity of traffic crashes that occurred on a specific road segment, namely, a suburban-type road (STR), simultaneously addressing issues related to unobserved heterogeneity in data. Multiple heterogeneity ordered probit models are evaluated against Ohio crash data from the Highway Safety Information System (HSIS). The findings reveal the heterogeneous nature of some variables, such as the nighttime indicator, and demonstrate the distinctive feature of each model to capture the effect of unobserved heterogeneity in analyzing data with such variables. Furthermore, the result helps comprehend the contextual scenarios of crashes at STRs and formulate practical plans to lower the severity of such crashes.</description><identifier>ISSN: 0001-4575</identifier><identifier>EISSN: 1879-2057</identifier><identifier>DOI: 10.1016/j.aap.2024.107524</identifier><identifier>PMID: 38471235</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Crash data ; Heterogeneity models ; Injury severity ; Ordered probit model ; Safety performance ; Suburban-type roads</subject><ispartof>Accident analysis and prevention, 2024-06, Vol.200, p.107524-107524, Article 107524</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-65760f319bb128abacd5ef7b20c84fd6901305385658e1c947c95dfb10bcb17d3</cites><orcidid>0000-0002-8146-1110 ; 0000-0003-4439-7145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0001457524000691$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38471235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khanal, Bedan</creatorcontrib><creatorcontrib>Zahertar, Anahita</creatorcontrib><creatorcontrib>Lavrenz, Steven</creatorcontrib><title>Heterogeneity in crash data: A cross comparison between ordered probability model and its variant using crashes at suburban type arterial</title><title>Accident analysis and prevention</title><addtitle>Accid Anal Prev</addtitle><description>•Evaluation of the injury severity of police-reported crashes on suburban type roadways (STRs) in Ohio.•Ordered heterogeneity models are estimated to account for unobserved heterogeneity in the crash data.•Heterogeneity models show a superior fit than a fixed parameters model in crash data.•Rear-end crashes were the most frequent, and head-on crashes were the least frequent crash type. Transportation researchers have long been using the statistical analysis of traffic crash data to create a proactive awareness of traffic safety, make important decisions about the design of vehicles and highways, and develop and implement safe preventive strategies to improve safety. Despite significant progress toward maintaining and analyzing traffic crash data, researchers still encounter several challenges and methodological barriers when conducting statistical analysis. One of these challenges is dealing with the issue of unobserved heterogeneity in crash data. This study uses state-of-the-art methodologies to model the injury severity of traffic crashes that occurred on a specific road segment, namely, a suburban-type road (STR), simultaneously addressing issues related to unobserved heterogeneity in data. Multiple heterogeneity ordered probit models are evaluated against Ohio crash data from the Highway Safety Information System (HSIS). The findings reveal the heterogeneous nature of some variables, such as the nighttime indicator, and demonstrate the distinctive feature of each model to capture the effect of unobserved heterogeneity in analyzing data with such variables. Furthermore, the result helps comprehend the contextual scenarios of crashes at STRs and formulate practical plans to lower the severity of such crashes.</description><subject>Crash data</subject><subject>Heterogeneity models</subject><subject>Injury severity</subject><subject>Ordered probit model</subject><subject>Safety performance</subject><subject>Suburban-type roads</subject><issn>0001-4575</issn><issn>1879-2057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhS1ERZfCD-CCfOSSxU7iOIFTVQFFqtRLe7bG9qR4ldjBdlrtT-Bf4yWFI6fRk773NDOPkHec7Tnj3cfDHmDZ16xui5aibl-QHe_lUNVMyJdkxxjjVSukOCevUzoUKXspXpHzpm8lrxuxI7-uMWMMD-jR5SN1npoI6Qe1kOETvSwqpERNmBeILgVPNeYnRE9DtBjR0iUGDdpNJ_ccLE4UvKUuJ_pYHOAzXZPzD1ssJgqZplWvUYOn-bgghVgWcDC9IWcjTAnfPs8Lcv_1y93VdXVz--371eVNZRomctUJ2bGx4YPWvO5Bg7ECR6lrZvp2tN3AeOGaXnSiR26GVppB2FFzpo3m0jYX5MOWWzb_uWLKanbJ4DSBx7AmVQ-i6_qmFV1B-Yb--ULEUS3RzRCPijN1akAdVGlAnRpQWwPF8_45ftUz2n-Ovy8vwOcNwHLko8OoknHoDVoX0WRlg_tP_G_ah5i4</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Khanal, Bedan</creator><creator>Zahertar, Anahita</creator><creator>Lavrenz, Steven</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8146-1110</orcidid><orcidid>https://orcid.org/0000-0003-4439-7145</orcidid></search><sort><creationdate>202406</creationdate><title>Heterogeneity in crash data: A cross comparison between ordered probability model and its variant using crashes at suburban type arterial</title><author>Khanal, Bedan ; Zahertar, Anahita ; Lavrenz, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-65760f319bb128abacd5ef7b20c84fd6901305385658e1c947c95dfb10bcb17d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crash data</topic><topic>Heterogeneity models</topic><topic>Injury severity</topic><topic>Ordered probit model</topic><topic>Safety performance</topic><topic>Suburban-type roads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khanal, Bedan</creatorcontrib><creatorcontrib>Zahertar, Anahita</creatorcontrib><creatorcontrib>Lavrenz, Steven</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Accident analysis and prevention</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khanal, Bedan</au><au>Zahertar, Anahita</au><au>Lavrenz, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneity in crash data: A cross comparison between ordered probability model and its variant using crashes at suburban type arterial</atitle><jtitle>Accident analysis and prevention</jtitle><addtitle>Accid Anal Prev</addtitle><date>2024-06</date><risdate>2024</risdate><volume>200</volume><spage>107524</spage><epage>107524</epage><pages>107524-107524</pages><artnum>107524</artnum><issn>0001-4575</issn><eissn>1879-2057</eissn><abstract>•Evaluation of the injury severity of police-reported crashes on suburban type roadways (STRs) in Ohio.•Ordered heterogeneity models are estimated to account for unobserved heterogeneity in the crash data.•Heterogeneity models show a superior fit than a fixed parameters model in crash data.•Rear-end crashes were the most frequent, and head-on crashes were the least frequent crash type. Transportation researchers have long been using the statistical analysis of traffic crash data to create a proactive awareness of traffic safety, make important decisions about the design of vehicles and highways, and develop and implement safe preventive strategies to improve safety. Despite significant progress toward maintaining and analyzing traffic crash data, researchers still encounter several challenges and methodological barriers when conducting statistical analysis. One of these challenges is dealing with the issue of unobserved heterogeneity in crash data. This study uses state-of-the-art methodologies to model the injury severity of traffic crashes that occurred on a specific road segment, namely, a suburban-type road (STR), simultaneously addressing issues related to unobserved heterogeneity in data. Multiple heterogeneity ordered probit models are evaluated against Ohio crash data from the Highway Safety Information System (HSIS). The findings reveal the heterogeneous nature of some variables, such as the nighttime indicator, and demonstrate the distinctive feature of each model to capture the effect of unobserved heterogeneity in analyzing data with such variables. Furthermore, the result helps comprehend the contextual scenarios of crashes at STRs and formulate practical plans to lower the severity of such crashes.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38471235</pmid><doi>10.1016/j.aap.2024.107524</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8146-1110</orcidid><orcidid>https://orcid.org/0000-0003-4439-7145</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-4575
ispartof Accident analysis and prevention, 2024-06, Vol.200, p.107524-107524, Article 107524
issn 0001-4575
1879-2057
language eng
recordid cdi_proquest_miscellaneous_2956683456
source Elsevier ScienceDirect Journals
subjects Crash data
Heterogeneity models
Injury severity
Ordered probit model
Safety performance
Suburban-type roads
title Heterogeneity in crash data: A cross comparison between ordered probability model and its variant using crashes at suburban type arterial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneity%20in%20crash%20data:%20A%20cross%20comparison%20between%20ordered%20probability%20model%20and%20its%20variant%20using%20crashes%20at%20suburban%20type%20arterial&rft.jtitle=Accident%20analysis%20and%20prevention&rft.au=Khanal,%20Bedan&rft.date=2024-06&rft.volume=200&rft.spage=107524&rft.epage=107524&rft.pages=107524-107524&rft.artnum=107524&rft.issn=0001-4575&rft.eissn=1879-2057&rft_id=info:doi/10.1016/j.aap.2024.107524&rft_dat=%3Cproquest_cross%3E2956683456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956683456&rft_id=info:pmid/38471235&rft_els_id=S0001457524000691&rfr_iscdi=true