Dissolution‐Induced Surface Reconstruction of Ni0.95Pt0.05Si/p‐Si Photocathode for Efficient Photoelectrochemical H2 Production
Metal silicide/Si photoelectrodes have demonstrated significant potential for application in photoelectrochemical (PEC) water splitting to produce H2. To achieve an efficient and economical hydrogen evolution reaction (HER), a paramount consideration lies in attaining exceptional catalytic activity...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-08, Vol.20 (32), p.e2311738-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 32 |
container_start_page | e2311738 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Zhang, Haoyue Li, Shengyang Xu, Jing Sun, Xianglie Xia, Jing She, Guangwei Yu, Jiacheng Ru, Changzhou Luo, Jun Meng, Xiangmin Mu, Lixuan Shi, Wensheng |
description | Metal silicide/Si photoelectrodes have demonstrated significant potential for application in photoelectrochemical (PEC) water splitting to produce H2. To achieve an efficient and economical hydrogen evolution reaction (HER), a paramount consideration lies in attaining exceptional catalytic activity on the metal silicide surface with minimal use of noble metals. Here, this study presents the design and construction of a novel Ni0.95Pt0.05Si/p‐Si photocathode. Dopant segregation is used to achieve a Schottky barrier height as high as 1.0 eV and a high photovoltage of 420 mV. To achieve superior electrocatalytic activity for HER, a dissolution‐induced surface reconstruction (SR) strategy is proposed to in situ convert surface Ni0.95Pt0.05Si to highly active Pt2Si. The resulting SR Ni0.95Pt0.05Si/p‐Si photocathode exhibits excellent HER performance with an onset potential of 0.45 V (vs RHE) and a high maximum photocurrent density of 40.5 mA cm−2 and a remarkable applied bias photon‐to‐current efficiency (ABPE) of 5.3% under simulated AM 1.5 (100 mW cm−2) illumination. The anti‐corrosion silicide layer effectively protects Si, ensuring excellent stability of the SR Ni0.95Pt0.05Si/p‐Si photoelectrode. This study highlights the potential for achieving efficient PEC HER using bimetallic silicide/Si photocathodes with reduced Pt consumption, offering an auspicious perspective for the cost‐effective conversion of solar energy to chemical energy.
A dissolution‐induced surface reconstruction (SR) strategy is proposed to significantly enhance the surface catalytic activity of the Ni0.95Pt0.05Si/p‐Si photocathode toward HER. Thanks to the high surface catalytic activity and high photovoltage resulting from the interfacial dipoles introduced by dopant segregation, the SR Ni0.95Pt0.05Si/p‐Si photocathode achieves excellent PEC HER performance with an ABPE as high as 5.3% while utilizing Pt sparingly. |
doi_str_mv | 10.1002/smll.202311738 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2956682746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956682746</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2668-306f880872fab13172778cf94a3310770eba06a5037ffab4249684fed3f8d9e03</originalsourceid><addsrcrecordid>eNpdkc9KAzEQxhdRUKtXzwEvXrqdJLub5Cj-q1C1WD2HNJvQSLqpyS7Sm-AL-Iw-iVsqPXiaGeY33zfwZdkZhhwDkFFaep8TIBRjRvledoQrTIcVJ2J_12M4zI5TegOgmBTsKPu6dikF37UuND-f3_dN3WlTo1kXrdIGPRsdmtTGTm8AFCx6dJCLctpCDuXMjVb90cyh6SK0Qat2EWqDbIjoxlqnnWna7cp4o9sY9MIsnVYejQmaxlBvZU-yA6t8Mqd_dZC93t68XI2Hk6e7-6vLyXBFqooPKVSWc-CMWDXHFDPCGNdWFIpSDIyBmSuoVAmU2Z4oSCEqXlhTU8trYYAOsout7iqG986kVi5d0sZ71ZjQJUlE2fsQVlQ9ev4PfQtdbPrvJAUBJYeSip4SW-rDebOWq-iWKq4lBrkJRG4CkbtA5OxhMtlN9Bej0IOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090580539</pqid></control><display><type>article</type><title>Dissolution‐Induced Surface Reconstruction of Ni0.95Pt0.05Si/p‐Si Photocathode for Efficient Photoelectrochemical H2 Production</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Haoyue ; Li, Shengyang ; Xu, Jing ; Sun, Xianglie ; Xia, Jing ; She, Guangwei ; Yu, Jiacheng ; Ru, Changzhou ; Luo, Jun ; Meng, Xiangmin ; Mu, Lixuan ; Shi, Wensheng</creator><creatorcontrib>Zhang, Haoyue ; Li, Shengyang ; Xu, Jing ; Sun, Xianglie ; Xia, Jing ; She, Guangwei ; Yu, Jiacheng ; Ru, Changzhou ; Luo, Jun ; Meng, Xiangmin ; Mu, Lixuan ; Shi, Wensheng</creatorcontrib><description>Metal silicide/Si photoelectrodes have demonstrated significant potential for application in photoelectrochemical (PEC) water splitting to produce H2. To achieve an efficient and economical hydrogen evolution reaction (HER), a paramount consideration lies in attaining exceptional catalytic activity on the metal silicide surface with minimal use of noble metals. Here, this study presents the design and construction of a novel Ni0.95Pt0.05Si/p‐Si photocathode. Dopant segregation is used to achieve a Schottky barrier height as high as 1.0 eV and a high photovoltage of 420 mV. To achieve superior electrocatalytic activity for HER, a dissolution‐induced surface reconstruction (SR) strategy is proposed to in situ convert surface Ni0.95Pt0.05Si to highly active Pt2Si. The resulting SR Ni0.95Pt0.05Si/p‐Si photocathode exhibits excellent HER performance with an onset potential of 0.45 V (vs RHE) and a high maximum photocurrent density of 40.5 mA cm−2 and a remarkable applied bias photon‐to‐current efficiency (ABPE) of 5.3% under simulated AM 1.5 (100 mW cm−2) illumination. The anti‐corrosion silicide layer effectively protects Si, ensuring excellent stability of the SR Ni0.95Pt0.05Si/p‐Si photoelectrode. This study highlights the potential for achieving efficient PEC HER using bimetallic silicide/Si photocathodes with reduced Pt consumption, offering an auspicious perspective for the cost‐effective conversion of solar energy to chemical energy.
A dissolution‐induced surface reconstruction (SR) strategy is proposed to significantly enhance the surface catalytic activity of the Ni0.95Pt0.05Si/p‐Si photocathode toward HER. Thanks to the high surface catalytic activity and high photovoltage resulting from the interfacial dipoles introduced by dopant segregation, the SR Ni0.95Pt0.05Si/p‐Si photocathode achieves excellent PEC HER performance with an ABPE as high as 5.3% while utilizing Pt sparingly.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202311738</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>bimetallic silicide ; Bimetals ; Catalytic activity ; Chemical energy ; Current efficiency ; Dissolution ; Hydrogen evolution reactions ; Intermetallic compounds ; low‐Pt catalyst ; Metal silicides ; Noble metals ; Photocathodes ; Photoelectric effect ; photoelectrochemical water splitting ; Reconstruction ; Silicides ; Silicon ; Si‐based photoelectrode ; Solar energy conversion ; surface reconstruction ; Water splitting</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-08, Vol.20 (32), p.e2311738-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1017-5456</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202311738$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202311738$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zhang, Haoyue</creatorcontrib><creatorcontrib>Li, Shengyang</creatorcontrib><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Sun, Xianglie</creatorcontrib><creatorcontrib>Xia, Jing</creatorcontrib><creatorcontrib>She, Guangwei</creatorcontrib><creatorcontrib>Yu, Jiacheng</creatorcontrib><creatorcontrib>Ru, Changzhou</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Meng, Xiangmin</creatorcontrib><creatorcontrib>Mu, Lixuan</creatorcontrib><creatorcontrib>Shi, Wensheng</creatorcontrib><title>Dissolution‐Induced Surface Reconstruction of Ni0.95Pt0.05Si/p‐Si Photocathode for Efficient Photoelectrochemical H2 Production</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Metal silicide/Si photoelectrodes have demonstrated significant potential for application in photoelectrochemical (PEC) water splitting to produce H2. To achieve an efficient and economical hydrogen evolution reaction (HER), a paramount consideration lies in attaining exceptional catalytic activity on the metal silicide surface with minimal use of noble metals. Here, this study presents the design and construction of a novel Ni0.95Pt0.05Si/p‐Si photocathode. Dopant segregation is used to achieve a Schottky barrier height as high as 1.0 eV and a high photovoltage of 420 mV. To achieve superior electrocatalytic activity for HER, a dissolution‐induced surface reconstruction (SR) strategy is proposed to in situ convert surface Ni0.95Pt0.05Si to highly active Pt2Si. The resulting SR Ni0.95Pt0.05Si/p‐Si photocathode exhibits excellent HER performance with an onset potential of 0.45 V (vs RHE) and a high maximum photocurrent density of 40.5 mA cm−2 and a remarkable applied bias photon‐to‐current efficiency (ABPE) of 5.3% under simulated AM 1.5 (100 mW cm−2) illumination. The anti‐corrosion silicide layer effectively protects Si, ensuring excellent stability of the SR Ni0.95Pt0.05Si/p‐Si photoelectrode. This study highlights the potential for achieving efficient PEC HER using bimetallic silicide/Si photocathodes with reduced Pt consumption, offering an auspicious perspective for the cost‐effective conversion of solar energy to chemical energy.
A dissolution‐induced surface reconstruction (SR) strategy is proposed to significantly enhance the surface catalytic activity of the Ni0.95Pt0.05Si/p‐Si photocathode toward HER. Thanks to the high surface catalytic activity and high photovoltage resulting from the interfacial dipoles introduced by dopant segregation, the SR Ni0.95Pt0.05Si/p‐Si photocathode achieves excellent PEC HER performance with an ABPE as high as 5.3% while utilizing Pt sparingly.</description><subject>bimetallic silicide</subject><subject>Bimetals</subject><subject>Catalytic activity</subject><subject>Chemical energy</subject><subject>Current efficiency</subject><subject>Dissolution</subject><subject>Hydrogen evolution reactions</subject><subject>Intermetallic compounds</subject><subject>low‐Pt catalyst</subject><subject>Metal silicides</subject><subject>Noble metals</subject><subject>Photocathodes</subject><subject>Photoelectric effect</subject><subject>photoelectrochemical water splitting</subject><subject>Reconstruction</subject><subject>Silicides</subject><subject>Silicon</subject><subject>Si‐based photoelectrode</subject><subject>Solar energy conversion</subject><subject>surface reconstruction</subject><subject>Water splitting</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkc9KAzEQxhdRUKtXzwEvXrqdJLub5Cj-q1C1WD2HNJvQSLqpyS7Sm-AL-Iw-iVsqPXiaGeY33zfwZdkZhhwDkFFaep8TIBRjRvledoQrTIcVJ2J_12M4zI5TegOgmBTsKPu6dikF37UuND-f3_dN3WlTo1kXrdIGPRsdmtTGTm8AFCx6dJCLctpCDuXMjVb90cyh6SK0Qat2EWqDbIjoxlqnnWna7cp4o9sY9MIsnVYejQmaxlBvZU-yA6t8Mqd_dZC93t68XI2Hk6e7-6vLyXBFqooPKVSWc-CMWDXHFDPCGNdWFIpSDIyBmSuoVAmU2Z4oSCEqXlhTU8trYYAOsout7iqG986kVi5d0sZ71ZjQJUlE2fsQVlQ9ev4PfQtdbPrvJAUBJYeSip4SW-rDebOWq-iWKq4lBrkJRG4CkbtA5OxhMtlN9Bej0IOA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Zhang, Haoyue</creator><creator>Li, Shengyang</creator><creator>Xu, Jing</creator><creator>Sun, Xianglie</creator><creator>Xia, Jing</creator><creator>She, Guangwei</creator><creator>Yu, Jiacheng</creator><creator>Ru, Changzhou</creator><creator>Luo, Jun</creator><creator>Meng, Xiangmin</creator><creator>Mu, Lixuan</creator><creator>Shi, Wensheng</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1017-5456</orcidid></search><sort><creationdate>20240801</creationdate><title>Dissolution‐Induced Surface Reconstruction of Ni0.95Pt0.05Si/p‐Si Photocathode for Efficient Photoelectrochemical H2 Production</title><author>Zhang, Haoyue ; Li, Shengyang ; Xu, Jing ; Sun, Xianglie ; Xia, Jing ; She, Guangwei ; Yu, Jiacheng ; Ru, Changzhou ; Luo, Jun ; Meng, Xiangmin ; Mu, Lixuan ; Shi, Wensheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2668-306f880872fab13172778cf94a3310770eba06a5037ffab4249684fed3f8d9e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bimetallic silicide</topic><topic>Bimetals</topic><topic>Catalytic activity</topic><topic>Chemical energy</topic><topic>Current efficiency</topic><topic>Dissolution</topic><topic>Hydrogen evolution reactions</topic><topic>Intermetallic compounds</topic><topic>low‐Pt catalyst</topic><topic>Metal silicides</topic><topic>Noble metals</topic><topic>Photocathodes</topic><topic>Photoelectric effect</topic><topic>photoelectrochemical water splitting</topic><topic>Reconstruction</topic><topic>Silicides</topic><topic>Silicon</topic><topic>Si‐based photoelectrode</topic><topic>Solar energy conversion</topic><topic>surface reconstruction</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haoyue</creatorcontrib><creatorcontrib>Li, Shengyang</creatorcontrib><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Sun, Xianglie</creatorcontrib><creatorcontrib>Xia, Jing</creatorcontrib><creatorcontrib>She, Guangwei</creatorcontrib><creatorcontrib>Yu, Jiacheng</creatorcontrib><creatorcontrib>Ru, Changzhou</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Meng, Xiangmin</creatorcontrib><creatorcontrib>Mu, Lixuan</creatorcontrib><creatorcontrib>Shi, Wensheng</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Haoyue</au><au>Li, Shengyang</au><au>Xu, Jing</au><au>Sun, Xianglie</au><au>Xia, Jing</au><au>She, Guangwei</au><au>Yu, Jiacheng</au><au>Ru, Changzhou</au><au>Luo, Jun</au><au>Meng, Xiangmin</au><au>Mu, Lixuan</au><au>Shi, Wensheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissolution‐Induced Surface Reconstruction of Ni0.95Pt0.05Si/p‐Si Photocathode for Efficient Photoelectrochemical H2 Production</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>20</volume><issue>32</issue><spage>e2311738</spage><epage>n/a</epage><pages>e2311738-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Metal silicide/Si photoelectrodes have demonstrated significant potential for application in photoelectrochemical (PEC) water splitting to produce H2. To achieve an efficient and economical hydrogen evolution reaction (HER), a paramount consideration lies in attaining exceptional catalytic activity on the metal silicide surface with minimal use of noble metals. Here, this study presents the design and construction of a novel Ni0.95Pt0.05Si/p‐Si photocathode. Dopant segregation is used to achieve a Schottky barrier height as high as 1.0 eV and a high photovoltage of 420 mV. To achieve superior electrocatalytic activity for HER, a dissolution‐induced surface reconstruction (SR) strategy is proposed to in situ convert surface Ni0.95Pt0.05Si to highly active Pt2Si. The resulting SR Ni0.95Pt0.05Si/p‐Si photocathode exhibits excellent HER performance with an onset potential of 0.45 V (vs RHE) and a high maximum photocurrent density of 40.5 mA cm−2 and a remarkable applied bias photon‐to‐current efficiency (ABPE) of 5.3% under simulated AM 1.5 (100 mW cm−2) illumination. The anti‐corrosion silicide layer effectively protects Si, ensuring excellent stability of the SR Ni0.95Pt0.05Si/p‐Si photoelectrode. This study highlights the potential for achieving efficient PEC HER using bimetallic silicide/Si photocathodes with reduced Pt consumption, offering an auspicious perspective for the cost‐effective conversion of solar energy to chemical energy.
A dissolution‐induced surface reconstruction (SR) strategy is proposed to significantly enhance the surface catalytic activity of the Ni0.95Pt0.05Si/p‐Si photocathode toward HER. Thanks to the high surface catalytic activity and high photovoltage resulting from the interfacial dipoles introduced by dopant segregation, the SR Ni0.95Pt0.05Si/p‐Si photocathode achieves excellent PEC HER performance with an ABPE as high as 5.3% while utilizing Pt sparingly.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202311738</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1017-5456</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-08, Vol.20 (32), p.e2311738-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2956682746 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | bimetallic silicide Bimetals Catalytic activity Chemical energy Current efficiency Dissolution Hydrogen evolution reactions Intermetallic compounds low‐Pt catalyst Metal silicides Noble metals Photocathodes Photoelectric effect photoelectrochemical water splitting Reconstruction Silicides Silicon Si‐based photoelectrode Solar energy conversion surface reconstruction Water splitting |
title | Dissolution‐Induced Surface Reconstruction of Ni0.95Pt0.05Si/p‐Si Photocathode for Efficient Photoelectrochemical H2 Production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissolution%E2%80%90Induced%20Surface%20Reconstruction%20of%20Ni0.95Pt0.05Si/p%E2%80%90Si%20Photocathode%20for%20Efficient%20Photoelectrochemical%20H2%20Production&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhang,%20Haoyue&rft.date=2024-08-01&rft.volume=20&rft.issue=32&rft.spage=e2311738&rft.epage=n/a&rft.pages=e2311738-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202311738&rft_dat=%3Cproquest_wiley%3E2956682746%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090580539&rft_id=info:pmid/&rfr_iscdi=true |