Dissolution‐Induced Surface Reconstruction of Ni0.95Pt0.05Si/p‐Si Photocathode for Efficient Photoelectrochemical H2 Production

Metal silicide/Si photoelectrodes have demonstrated significant potential for application in photoelectrochemical (PEC) water splitting to produce H2. To achieve an efficient and economical hydrogen evolution reaction (HER), a paramount consideration lies in attaining exceptional catalytic activity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-08, Vol.20 (32), p.e2311738-n/a
Hauptverfasser: Zhang, Haoyue, Li, Shengyang, Xu, Jing, Sun, Xianglie, Xia, Jing, She, Guangwei, Yu, Jiacheng, Ru, Changzhou, Luo, Jun, Meng, Xiangmin, Mu, Lixuan, Shi, Wensheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 32
container_start_page e2311738
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Zhang, Haoyue
Li, Shengyang
Xu, Jing
Sun, Xianglie
Xia, Jing
She, Guangwei
Yu, Jiacheng
Ru, Changzhou
Luo, Jun
Meng, Xiangmin
Mu, Lixuan
Shi, Wensheng
description Metal silicide/Si photoelectrodes have demonstrated significant potential for application in photoelectrochemical (PEC) water splitting to produce H2. To achieve an efficient and economical hydrogen evolution reaction (HER), a paramount consideration lies in attaining exceptional catalytic activity on the metal silicide surface with minimal use of noble metals. Here, this study presents the design and construction of a novel Ni0.95Pt0.05Si/p‐Si photocathode. Dopant segregation is used to achieve a Schottky barrier height as high as 1.0 eV and a high photovoltage of 420 mV. To achieve superior electrocatalytic activity for HER, a dissolution‐induced surface reconstruction (SR) strategy is proposed to in situ convert surface Ni0.95Pt0.05Si to highly active Pt2Si. The resulting SR Ni0.95Pt0.05Si/p‐Si photocathode exhibits excellent HER performance with an onset potential of 0.45 V (vs RHE) and a high maximum photocurrent density of 40.5 mA cm−2 and a remarkable applied bias photon‐to‐current efficiency (ABPE) of 5.3% under simulated AM 1.5 (100 mW cm−2) illumination. The anti‐corrosion silicide layer effectively protects Si, ensuring excellent stability of the SR Ni0.95Pt0.05Si/p‐Si photoelectrode. This study highlights the potential for achieving efficient PEC HER using bimetallic silicide/Si photocathodes with reduced Pt consumption, offering an auspicious perspective for the cost‐effective conversion of solar energy to chemical energy. A dissolution‐induced surface reconstruction (SR) strategy is proposed to significantly enhance the surface catalytic activity of the Ni0.95Pt0.05Si/p‐Si photocathode toward HER. Thanks to the high surface catalytic activity and high photovoltage resulting from the interfacial dipoles introduced by dopant segregation, the SR Ni0.95Pt0.05Si/p‐Si photocathode achieves excellent PEC HER performance with an ABPE as high as 5.3% while utilizing Pt sparingly.
doi_str_mv 10.1002/smll.202311738
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2956682746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956682746</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2668-306f880872fab13172778cf94a3310770eba06a5037ffab4249684fed3f8d9e03</originalsourceid><addsrcrecordid>eNpdkc9KAzEQxhdRUKtXzwEvXrqdJLub5Cj-q1C1WD2HNJvQSLqpyS7Sm-AL-Iw-iVsqPXiaGeY33zfwZdkZhhwDkFFaep8TIBRjRvledoQrTIcVJ2J_12M4zI5TegOgmBTsKPu6dikF37UuND-f3_dN3WlTo1kXrdIGPRsdmtTGTm8AFCx6dJCLctpCDuXMjVb90cyh6SK0Qat2EWqDbIjoxlqnnWna7cp4o9sY9MIsnVYejQmaxlBvZU-yA6t8Mqd_dZC93t68XI2Hk6e7-6vLyXBFqooPKVSWc-CMWDXHFDPCGNdWFIpSDIyBmSuoVAmU2Z4oSCEqXlhTU8trYYAOsout7iqG986kVi5d0sZ71ZjQJUlE2fsQVlQ9ev4PfQtdbPrvJAUBJYeSip4SW-rDebOWq-iWKq4lBrkJRG4CkbtA5OxhMtlN9Bej0IOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090580539</pqid></control><display><type>article</type><title>Dissolution‐Induced Surface Reconstruction of Ni0.95Pt0.05Si/p‐Si Photocathode for Efficient Photoelectrochemical H2 Production</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Haoyue ; Li, Shengyang ; Xu, Jing ; Sun, Xianglie ; Xia, Jing ; She, Guangwei ; Yu, Jiacheng ; Ru, Changzhou ; Luo, Jun ; Meng, Xiangmin ; Mu, Lixuan ; Shi, Wensheng</creator><creatorcontrib>Zhang, Haoyue ; Li, Shengyang ; Xu, Jing ; Sun, Xianglie ; Xia, Jing ; She, Guangwei ; Yu, Jiacheng ; Ru, Changzhou ; Luo, Jun ; Meng, Xiangmin ; Mu, Lixuan ; Shi, Wensheng</creatorcontrib><description>Metal silicide/Si photoelectrodes have demonstrated significant potential for application in photoelectrochemical (PEC) water splitting to produce H2. To achieve an efficient and economical hydrogen evolution reaction (HER), a paramount consideration lies in attaining exceptional catalytic activity on the metal silicide surface with minimal use of noble metals. Here, this study presents the design and construction of a novel Ni0.95Pt0.05Si/p‐Si photocathode. Dopant segregation is used to achieve a Schottky barrier height as high as 1.0 eV and a high photovoltage of 420 mV. To achieve superior electrocatalytic activity for HER, a dissolution‐induced surface reconstruction (SR) strategy is proposed to in situ convert surface Ni0.95Pt0.05Si to highly active Pt2Si. The resulting SR Ni0.95Pt0.05Si/p‐Si photocathode exhibits excellent HER performance with an onset potential of 0.45 V (vs RHE) and a high maximum photocurrent density of 40.5 mA cm−2 and a remarkable applied bias photon‐to‐current efficiency (ABPE) of 5.3% under simulated AM 1.5 (100 mW cm−2) illumination. The anti‐corrosion silicide layer effectively protects Si, ensuring excellent stability of the SR Ni0.95Pt0.05Si/p‐Si photoelectrode. This study highlights the potential for achieving efficient PEC HER using bimetallic silicide/Si photocathodes with reduced Pt consumption, offering an auspicious perspective for the cost‐effective conversion of solar energy to chemical energy. A dissolution‐induced surface reconstruction (SR) strategy is proposed to significantly enhance the surface catalytic activity of the Ni0.95Pt0.05Si/p‐Si photocathode toward HER. Thanks to the high surface catalytic activity and high photovoltage resulting from the interfacial dipoles introduced by dopant segregation, the SR Ni0.95Pt0.05Si/p‐Si photocathode achieves excellent PEC HER performance with an ABPE as high as 5.3% while utilizing Pt sparingly.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202311738</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>bimetallic silicide ; Bimetals ; Catalytic activity ; Chemical energy ; Current efficiency ; Dissolution ; Hydrogen evolution reactions ; Intermetallic compounds ; low‐Pt catalyst ; Metal silicides ; Noble metals ; Photocathodes ; Photoelectric effect ; photoelectrochemical water splitting ; Reconstruction ; Silicides ; Silicon ; Si‐based photoelectrode ; Solar energy conversion ; surface reconstruction ; Water splitting</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-08, Vol.20 (32), p.e2311738-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1017-5456</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202311738$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202311738$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zhang, Haoyue</creatorcontrib><creatorcontrib>Li, Shengyang</creatorcontrib><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Sun, Xianglie</creatorcontrib><creatorcontrib>Xia, Jing</creatorcontrib><creatorcontrib>She, Guangwei</creatorcontrib><creatorcontrib>Yu, Jiacheng</creatorcontrib><creatorcontrib>Ru, Changzhou</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Meng, Xiangmin</creatorcontrib><creatorcontrib>Mu, Lixuan</creatorcontrib><creatorcontrib>Shi, Wensheng</creatorcontrib><title>Dissolution‐Induced Surface Reconstruction of Ni0.95Pt0.05Si/p‐Si Photocathode for Efficient Photoelectrochemical H2 Production</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Metal silicide/Si photoelectrodes have demonstrated significant potential for application in photoelectrochemical (PEC) water splitting to produce H2. To achieve an efficient and economical hydrogen evolution reaction (HER), a paramount consideration lies in attaining exceptional catalytic activity on the metal silicide surface with minimal use of noble metals. Here, this study presents the design and construction of a novel Ni0.95Pt0.05Si/p‐Si photocathode. Dopant segregation is used to achieve a Schottky barrier height as high as 1.0 eV and a high photovoltage of 420 mV. To achieve superior electrocatalytic activity for HER, a dissolution‐induced surface reconstruction (SR) strategy is proposed to in situ convert surface Ni0.95Pt0.05Si to highly active Pt2Si. The resulting SR Ni0.95Pt0.05Si/p‐Si photocathode exhibits excellent HER performance with an onset potential of 0.45 V (vs RHE) and a high maximum photocurrent density of 40.5 mA cm−2 and a remarkable applied bias photon‐to‐current efficiency (ABPE) of 5.3% under simulated AM 1.5 (100 mW cm−2) illumination. The anti‐corrosion silicide layer effectively protects Si, ensuring excellent stability of the SR Ni0.95Pt0.05Si/p‐Si photoelectrode. This study highlights the potential for achieving efficient PEC HER using bimetallic silicide/Si photocathodes with reduced Pt consumption, offering an auspicious perspective for the cost‐effective conversion of solar energy to chemical energy. A dissolution‐induced surface reconstruction (SR) strategy is proposed to significantly enhance the surface catalytic activity of the Ni0.95Pt0.05Si/p‐Si photocathode toward HER. Thanks to the high surface catalytic activity and high photovoltage resulting from the interfacial dipoles introduced by dopant segregation, the SR Ni0.95Pt0.05Si/p‐Si photocathode achieves excellent PEC HER performance with an ABPE as high as 5.3% while utilizing Pt sparingly.</description><subject>bimetallic silicide</subject><subject>Bimetals</subject><subject>Catalytic activity</subject><subject>Chemical energy</subject><subject>Current efficiency</subject><subject>Dissolution</subject><subject>Hydrogen evolution reactions</subject><subject>Intermetallic compounds</subject><subject>low‐Pt catalyst</subject><subject>Metal silicides</subject><subject>Noble metals</subject><subject>Photocathodes</subject><subject>Photoelectric effect</subject><subject>photoelectrochemical water splitting</subject><subject>Reconstruction</subject><subject>Silicides</subject><subject>Silicon</subject><subject>Si‐based photoelectrode</subject><subject>Solar energy conversion</subject><subject>surface reconstruction</subject><subject>Water splitting</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkc9KAzEQxhdRUKtXzwEvXrqdJLub5Cj-q1C1WD2HNJvQSLqpyS7Sm-AL-Iw-iVsqPXiaGeY33zfwZdkZhhwDkFFaep8TIBRjRvledoQrTIcVJ2J_12M4zI5TegOgmBTsKPu6dikF37UuND-f3_dN3WlTo1kXrdIGPRsdmtTGTm8AFCx6dJCLctpCDuXMjVb90cyh6SK0Qat2EWqDbIjoxlqnnWna7cp4o9sY9MIsnVYejQmaxlBvZU-yA6t8Mqd_dZC93t68XI2Hk6e7-6vLyXBFqooPKVSWc-CMWDXHFDPCGNdWFIpSDIyBmSuoVAmU2Z4oSCEqXlhTU8trYYAOsout7iqG986kVi5d0sZ71ZjQJUlE2fsQVlQ9ev4PfQtdbPrvJAUBJYeSip4SW-rDebOWq-iWKq4lBrkJRG4CkbtA5OxhMtlN9Bej0IOA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Zhang, Haoyue</creator><creator>Li, Shengyang</creator><creator>Xu, Jing</creator><creator>Sun, Xianglie</creator><creator>Xia, Jing</creator><creator>She, Guangwei</creator><creator>Yu, Jiacheng</creator><creator>Ru, Changzhou</creator><creator>Luo, Jun</creator><creator>Meng, Xiangmin</creator><creator>Mu, Lixuan</creator><creator>Shi, Wensheng</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1017-5456</orcidid></search><sort><creationdate>20240801</creationdate><title>Dissolution‐Induced Surface Reconstruction of Ni0.95Pt0.05Si/p‐Si Photocathode for Efficient Photoelectrochemical H2 Production</title><author>Zhang, Haoyue ; Li, Shengyang ; Xu, Jing ; Sun, Xianglie ; Xia, Jing ; She, Guangwei ; Yu, Jiacheng ; Ru, Changzhou ; Luo, Jun ; Meng, Xiangmin ; Mu, Lixuan ; Shi, Wensheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2668-306f880872fab13172778cf94a3310770eba06a5037ffab4249684fed3f8d9e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bimetallic silicide</topic><topic>Bimetals</topic><topic>Catalytic activity</topic><topic>Chemical energy</topic><topic>Current efficiency</topic><topic>Dissolution</topic><topic>Hydrogen evolution reactions</topic><topic>Intermetallic compounds</topic><topic>low‐Pt catalyst</topic><topic>Metal silicides</topic><topic>Noble metals</topic><topic>Photocathodes</topic><topic>Photoelectric effect</topic><topic>photoelectrochemical water splitting</topic><topic>Reconstruction</topic><topic>Silicides</topic><topic>Silicon</topic><topic>Si‐based photoelectrode</topic><topic>Solar energy conversion</topic><topic>surface reconstruction</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haoyue</creatorcontrib><creatorcontrib>Li, Shengyang</creatorcontrib><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Sun, Xianglie</creatorcontrib><creatorcontrib>Xia, Jing</creatorcontrib><creatorcontrib>She, Guangwei</creatorcontrib><creatorcontrib>Yu, Jiacheng</creatorcontrib><creatorcontrib>Ru, Changzhou</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Meng, Xiangmin</creatorcontrib><creatorcontrib>Mu, Lixuan</creatorcontrib><creatorcontrib>Shi, Wensheng</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Haoyue</au><au>Li, Shengyang</au><au>Xu, Jing</au><au>Sun, Xianglie</au><au>Xia, Jing</au><au>She, Guangwei</au><au>Yu, Jiacheng</au><au>Ru, Changzhou</au><au>Luo, Jun</au><au>Meng, Xiangmin</au><au>Mu, Lixuan</au><au>Shi, Wensheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissolution‐Induced Surface Reconstruction of Ni0.95Pt0.05Si/p‐Si Photocathode for Efficient Photoelectrochemical H2 Production</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>20</volume><issue>32</issue><spage>e2311738</spage><epage>n/a</epage><pages>e2311738-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Metal silicide/Si photoelectrodes have demonstrated significant potential for application in photoelectrochemical (PEC) water splitting to produce H2. To achieve an efficient and economical hydrogen evolution reaction (HER), a paramount consideration lies in attaining exceptional catalytic activity on the metal silicide surface with minimal use of noble metals. Here, this study presents the design and construction of a novel Ni0.95Pt0.05Si/p‐Si photocathode. Dopant segregation is used to achieve a Schottky barrier height as high as 1.0 eV and a high photovoltage of 420 mV. To achieve superior electrocatalytic activity for HER, a dissolution‐induced surface reconstruction (SR) strategy is proposed to in situ convert surface Ni0.95Pt0.05Si to highly active Pt2Si. The resulting SR Ni0.95Pt0.05Si/p‐Si photocathode exhibits excellent HER performance with an onset potential of 0.45 V (vs RHE) and a high maximum photocurrent density of 40.5 mA cm−2 and a remarkable applied bias photon‐to‐current efficiency (ABPE) of 5.3% under simulated AM 1.5 (100 mW cm−2) illumination. The anti‐corrosion silicide layer effectively protects Si, ensuring excellent stability of the SR Ni0.95Pt0.05Si/p‐Si photoelectrode. This study highlights the potential for achieving efficient PEC HER using bimetallic silicide/Si photocathodes with reduced Pt consumption, offering an auspicious perspective for the cost‐effective conversion of solar energy to chemical energy. A dissolution‐induced surface reconstruction (SR) strategy is proposed to significantly enhance the surface catalytic activity of the Ni0.95Pt0.05Si/p‐Si photocathode toward HER. Thanks to the high surface catalytic activity and high photovoltage resulting from the interfacial dipoles introduced by dopant segregation, the SR Ni0.95Pt0.05Si/p‐Si photocathode achieves excellent PEC HER performance with an ABPE as high as 5.3% while utilizing Pt sparingly.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202311738</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1017-5456</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-08, Vol.20 (32), p.e2311738-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2956682746
source Wiley Online Library Journals Frontfile Complete
subjects bimetallic silicide
Bimetals
Catalytic activity
Chemical energy
Current efficiency
Dissolution
Hydrogen evolution reactions
Intermetallic compounds
low‐Pt catalyst
Metal silicides
Noble metals
Photocathodes
Photoelectric effect
photoelectrochemical water splitting
Reconstruction
Silicides
Silicon
Si‐based photoelectrode
Solar energy conversion
surface reconstruction
Water splitting
title Dissolution‐Induced Surface Reconstruction of Ni0.95Pt0.05Si/p‐Si Photocathode for Efficient Photoelectrochemical H2 Production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissolution%E2%80%90Induced%20Surface%20Reconstruction%20of%20Ni0.95Pt0.05Si/p%E2%80%90Si%20Photocathode%20for%20Efficient%20Photoelectrochemical%20H2%20Production&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhang,%20Haoyue&rft.date=2024-08-01&rft.volume=20&rft.issue=32&rft.spage=e2311738&rft.epage=n/a&rft.pages=e2311738-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202311738&rft_dat=%3Cproquest_wiley%3E2956682746%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090580539&rft_id=info:pmid/&rfr_iscdi=true