Separation and measurement of flame-formed high molecular weight polycyclic aromatic hydrocarbons by size-exclusion chromatography and laser desorption/ionization time-of-flight mass spectrometry

The partial contribution of polycyclic aromatic hydrocarbons (PAH), capable of being detected by gas chromatography (GC‐PAH), both to the total mass of the extractable organic fraction of flame‐formed carbon particulates and to its UV‐visible absorption and fluorescence spectra, has been determined...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rapid communications in mass spectrometry 2006-01, Vol.20 (7), p.1104-1108
Hauptverfasser: Apicella, B., Millan, M., Herod, A. A., Carpentieri, A., Pucci, P., Ciajolo, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1108
container_issue 7
container_start_page 1104
container_title Rapid communications in mass spectrometry
container_volume 20
creator Apicella, B.
Millan, M.
Herod, A. A.
Carpentieri, A.
Pucci, P.
Ciajolo, A.
description The partial contribution of polycyclic aromatic hydrocarbons (PAH), capable of being detected by gas chromatography (GC‐PAH), both to the total mass of the extractable organic fraction of flame‐formed carbon particulates and to its UV‐visible absorption and fluorescence spectra, has been determined by previous work. This contribution indicates the presence of PAH of molecular weight (MW) greater than 400 Da not accessible to conventional analysis. The detection of species in this higher MW range is important for both their potential toxicology and their possible role in soot formation. In the present work extracts of soots have been analyzed by linear mode laser desorption/ionization time‐of‐flight mass spectrometry (LDI‐TOF‐MS) to extend the MW range that can be analyzed beyond the GC‐PAH. The results have been compared with both analysis by reflector mode LDI‐TOF‐MS and the MW evaluation obtained by SEC analysis, as the shortcomings and advantages of both techniques appear to be complementary. Matching the results from the two techniques could give interesting insights in the molecular mass range between GC‐PAH and the first soot particles (of mass > 2000 Da). Mass spectra in this molecular mass range have been obtained with a main ion sequence spacing of 24 Th and a minor ion sequence also with a spacing of 24 Th but off‐set by 12 Th with respect to the main sequence. The two ion progressions have been interpreted by attributing the predominant peaks mainly to PAH with even‐carbon numbers and the smaller ones to cyclopenta‐fused ring PAH. These distributions indicate the occurrence of two competitive mechanisms in the growth of PAH and soot nucleation, i.e. the addition of acetylene (HACA mechanism) and the incorporation of pentagons by large polycyclic aromatic molecules into their aromatic bonding network. Copyright © 2006 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/rcm.2419
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29564389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29564389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3889-3ab050ea2c7d8545024c48309e29a434613861f1770cf9e005f3c6347ec8cc933</originalsourceid><addsrcrecordid>eNp1kctu1DAUhi0EokNB4gmQV4hNWjvOzUsYwUBVQOIipG4sz8lxx-DEqZ2oTV-PF8MzE8GKhWXZ-vydX_4Jec7ZGWcsPw_QneUFlw_IijNZZywX_CFZMVnyLF03J-RJjD8Z47zM2WNywqsy57yqVuT3Vxx00KP1PdV9SzvUcQrYYT9Sb6hxusPM-NBhS3f2ekc77xAmpwO9xXQe6eDdDDM4C1QH3yUV0N3cBg86bH0f6Xam0d5jhnfgprgfBLsD6K-DHnbzYa7TEQNtMfow7MOcp2Xvj7lGmzJ4kxl3GNjpGGkcEMZkwTHMT8kjo13EZ8t-Sr6_e_tt_T67_Lz5sH59mYFoGpkJvWUlQ51D3TZlUbK8gKIRTGIudSGKioum4obXNQMjkbHSCKhEUSM0AFKIU_Ly6B2Cv5kwjqqzEdA53aOfosplWRWikQl8dQQh-BgDGjUE2-kwK87UvjCVClP7whL6YnFO2_TH_8CloQRkR-DWOpz_K1Jf1h8X4cLbOOLdX16HX6qqRV2qH5826uLq4s3VpkqvxB8FcLSH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29564389</pqid></control><display><type>article</type><title>Separation and measurement of flame-formed high molecular weight polycyclic aromatic hydrocarbons by size-exclusion chromatography and laser desorption/ionization time-of-flight mass spectrometry</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Apicella, B. ; Millan, M. ; Herod, A. A. ; Carpentieri, A. ; Pucci, P. ; Ciajolo, A.</creator><creatorcontrib>Apicella, B. ; Millan, M. ; Herod, A. A. ; Carpentieri, A. ; Pucci, P. ; Ciajolo, A.</creatorcontrib><description>The partial contribution of polycyclic aromatic hydrocarbons (PAH), capable of being detected by gas chromatography (GC‐PAH), both to the total mass of the extractable organic fraction of flame‐formed carbon particulates and to its UV‐visible absorption and fluorescence spectra, has been determined by previous work. This contribution indicates the presence of PAH of molecular weight (MW) greater than 400 Da not accessible to conventional analysis. The detection of species in this higher MW range is important for both their potential toxicology and their possible role in soot formation. In the present work extracts of soots have been analyzed by linear mode laser desorption/ionization time‐of‐flight mass spectrometry (LDI‐TOF‐MS) to extend the MW range that can be analyzed beyond the GC‐PAH. The results have been compared with both analysis by reflector mode LDI‐TOF‐MS and the MW evaluation obtained by SEC analysis, as the shortcomings and advantages of both techniques appear to be complementary. Matching the results from the two techniques could give interesting insights in the molecular mass range between GC‐PAH and the first soot particles (of mass &gt; 2000 Da). Mass spectra in this molecular mass range have been obtained with a main ion sequence spacing of 24 Th and a minor ion sequence also with a spacing of 24 Th but off‐set by 12 Th with respect to the main sequence. The two ion progressions have been interpreted by attributing the predominant peaks mainly to PAH with even‐carbon numbers and the smaller ones to cyclopenta‐fused ring PAH. These distributions indicate the occurrence of two competitive mechanisms in the growth of PAH and soot nucleation, i.e. the addition of acetylene (HACA mechanism) and the incorporation of pentagons by large polycyclic aromatic molecules into their aromatic bonding network. Copyright © 2006 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0951-4198</identifier><identifier>EISSN: 1097-0231</identifier><identifier>DOI: 10.1002/rcm.2419</identifier><identifier>PMID: 16521166</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Carbon - analysis ; Carbon - chemistry ; Chromatography, Gel - methods ; Environmental Pollution - analysis ; Molecular Weight ; Polycyclic Aromatic Hydrocarbons - analysis ; Polycyclic Aromatic Hydrocarbons - chemistry ; Spectrometry, Mass, Electrospray Ionization - methods ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods</subject><ispartof>Rapid communications in mass spectrometry, 2006-01, Vol.20 (7), p.1104-1108</ispartof><rights>Copyright © 2006 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright (c) 2006 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3889-3ab050ea2c7d8545024c48309e29a434613861f1770cf9e005f3c6347ec8cc933</citedby><cites>FETCH-LOGICAL-c3889-3ab050ea2c7d8545024c48309e29a434613861f1770cf9e005f3c6347ec8cc933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frcm.2419$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frcm.2419$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16521166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Apicella, B.</creatorcontrib><creatorcontrib>Millan, M.</creatorcontrib><creatorcontrib>Herod, A. A.</creatorcontrib><creatorcontrib>Carpentieri, A.</creatorcontrib><creatorcontrib>Pucci, P.</creatorcontrib><creatorcontrib>Ciajolo, A.</creatorcontrib><title>Separation and measurement of flame-formed high molecular weight polycyclic aromatic hydrocarbons by size-exclusion chromatography and laser desorption/ionization time-of-flight mass spectrometry</title><title>Rapid communications in mass spectrometry</title><addtitle>Rapid Commun. Mass Spectrom</addtitle><description>The partial contribution of polycyclic aromatic hydrocarbons (PAH), capable of being detected by gas chromatography (GC‐PAH), both to the total mass of the extractable organic fraction of flame‐formed carbon particulates and to its UV‐visible absorption and fluorescence spectra, has been determined by previous work. This contribution indicates the presence of PAH of molecular weight (MW) greater than 400 Da not accessible to conventional analysis. The detection of species in this higher MW range is important for both their potential toxicology and their possible role in soot formation. In the present work extracts of soots have been analyzed by linear mode laser desorption/ionization time‐of‐flight mass spectrometry (LDI‐TOF‐MS) to extend the MW range that can be analyzed beyond the GC‐PAH. The results have been compared with both analysis by reflector mode LDI‐TOF‐MS and the MW evaluation obtained by SEC analysis, as the shortcomings and advantages of both techniques appear to be complementary. Matching the results from the two techniques could give interesting insights in the molecular mass range between GC‐PAH and the first soot particles (of mass &gt; 2000 Da). Mass spectra in this molecular mass range have been obtained with a main ion sequence spacing of 24 Th and a minor ion sequence also with a spacing of 24 Th but off‐set by 12 Th with respect to the main sequence. The two ion progressions have been interpreted by attributing the predominant peaks mainly to PAH with even‐carbon numbers and the smaller ones to cyclopenta‐fused ring PAH. These distributions indicate the occurrence of two competitive mechanisms in the growth of PAH and soot nucleation, i.e. the addition of acetylene (HACA mechanism) and the incorporation of pentagons by large polycyclic aromatic molecules into their aromatic bonding network. Copyright © 2006 John Wiley &amp; Sons, Ltd.</description><subject>Carbon - analysis</subject><subject>Carbon - chemistry</subject><subject>Chromatography, Gel - methods</subject><subject>Environmental Pollution - analysis</subject><subject>Molecular Weight</subject><subject>Polycyclic Aromatic Hydrocarbons - analysis</subject><subject>Polycyclic Aromatic Hydrocarbons - chemistry</subject><subject>Spectrometry, Mass, Electrospray Ionization - methods</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods</subject><issn>0951-4198</issn><issn>1097-0231</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctu1DAUhi0EokNB4gmQV4hNWjvOzUsYwUBVQOIipG4sz8lxx-DEqZ2oTV-PF8MzE8GKhWXZ-vydX_4Jec7ZGWcsPw_QneUFlw_IijNZZywX_CFZMVnyLF03J-RJjD8Z47zM2WNywqsy57yqVuT3Vxx00KP1PdV9SzvUcQrYYT9Sb6hxusPM-NBhS3f2ekc77xAmpwO9xXQe6eDdDDM4C1QH3yUV0N3cBg86bH0f6Xam0d5jhnfgprgfBLsD6K-DHnbzYa7TEQNtMfow7MOcp2Xvj7lGmzJ4kxl3GNjpGGkcEMZkwTHMT8kjo13EZ8t-Sr6_e_tt_T67_Lz5sH59mYFoGpkJvWUlQ51D3TZlUbK8gKIRTGIudSGKioum4obXNQMjkbHSCKhEUSM0AFKIU_Ly6B2Cv5kwjqqzEdA53aOfosplWRWikQl8dQQh-BgDGjUE2-kwK87UvjCVClP7whL6YnFO2_TH_8CloQRkR-DWOpz_K1Jf1h8X4cLbOOLdX16HX6qqRV2qH5826uLq4s3VpkqvxB8FcLSH</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Apicella, B.</creator><creator>Millan, M.</creator><creator>Herod, A. A.</creator><creator>Carpentieri, A.</creator><creator>Pucci, P.</creator><creator>Ciajolo, A.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20060101</creationdate><title>Separation and measurement of flame-formed high molecular weight polycyclic aromatic hydrocarbons by size-exclusion chromatography and laser desorption/ionization time-of-flight mass spectrometry</title><author>Apicella, B. ; Millan, M. ; Herod, A. A. ; Carpentieri, A. ; Pucci, P. ; Ciajolo, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3889-3ab050ea2c7d8545024c48309e29a434613861f1770cf9e005f3c6347ec8cc933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Carbon - analysis</topic><topic>Carbon - chemistry</topic><topic>Chromatography, Gel - methods</topic><topic>Environmental Pollution - analysis</topic><topic>Molecular Weight</topic><topic>Polycyclic Aromatic Hydrocarbons - analysis</topic><topic>Polycyclic Aromatic Hydrocarbons - chemistry</topic><topic>Spectrometry, Mass, Electrospray Ionization - methods</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Apicella, B.</creatorcontrib><creatorcontrib>Millan, M.</creatorcontrib><creatorcontrib>Herod, A. A.</creatorcontrib><creatorcontrib>Carpentieri, A.</creatorcontrib><creatorcontrib>Pucci, P.</creatorcontrib><creatorcontrib>Ciajolo, A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Rapid communications in mass spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Apicella, B.</au><au>Millan, M.</au><au>Herod, A. A.</au><au>Carpentieri, A.</au><au>Pucci, P.</au><au>Ciajolo, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separation and measurement of flame-formed high molecular weight polycyclic aromatic hydrocarbons by size-exclusion chromatography and laser desorption/ionization time-of-flight mass spectrometry</atitle><jtitle>Rapid communications in mass spectrometry</jtitle><addtitle>Rapid Commun. Mass Spectrom</addtitle><date>2006-01-01</date><risdate>2006</risdate><volume>20</volume><issue>7</issue><spage>1104</spage><epage>1108</epage><pages>1104-1108</pages><issn>0951-4198</issn><eissn>1097-0231</eissn><abstract>The partial contribution of polycyclic aromatic hydrocarbons (PAH), capable of being detected by gas chromatography (GC‐PAH), both to the total mass of the extractable organic fraction of flame‐formed carbon particulates and to its UV‐visible absorption and fluorescence spectra, has been determined by previous work. This contribution indicates the presence of PAH of molecular weight (MW) greater than 400 Da not accessible to conventional analysis. The detection of species in this higher MW range is important for both their potential toxicology and their possible role in soot formation. In the present work extracts of soots have been analyzed by linear mode laser desorption/ionization time‐of‐flight mass spectrometry (LDI‐TOF‐MS) to extend the MW range that can be analyzed beyond the GC‐PAH. The results have been compared with both analysis by reflector mode LDI‐TOF‐MS and the MW evaluation obtained by SEC analysis, as the shortcomings and advantages of both techniques appear to be complementary. Matching the results from the two techniques could give interesting insights in the molecular mass range between GC‐PAH and the first soot particles (of mass &gt; 2000 Da). Mass spectra in this molecular mass range have been obtained with a main ion sequence spacing of 24 Th and a minor ion sequence also with a spacing of 24 Th but off‐set by 12 Th with respect to the main sequence. The two ion progressions have been interpreted by attributing the predominant peaks mainly to PAH with even‐carbon numbers and the smaller ones to cyclopenta‐fused ring PAH. These distributions indicate the occurrence of two competitive mechanisms in the growth of PAH and soot nucleation, i.e. the addition of acetylene (HACA mechanism) and the incorporation of pentagons by large polycyclic aromatic molecules into their aromatic bonding network. Copyright © 2006 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>16521166</pmid><doi>10.1002/rcm.2419</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0951-4198
ispartof Rapid communications in mass spectrometry, 2006-01, Vol.20 (7), p.1104-1108
issn 0951-4198
1097-0231
language eng
recordid cdi_proquest_miscellaneous_29564389
source MEDLINE; Wiley Journals
subjects Carbon - analysis
Carbon - chemistry
Chromatography, Gel - methods
Environmental Pollution - analysis
Molecular Weight
Polycyclic Aromatic Hydrocarbons - analysis
Polycyclic Aromatic Hydrocarbons - chemistry
Spectrometry, Mass, Electrospray Ionization - methods
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods
title Separation and measurement of flame-formed high molecular weight polycyclic aromatic hydrocarbons by size-exclusion chromatography and laser desorption/ionization time-of-flight mass spectrometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separation%20and%20measurement%20of%20flame-formed%20high%20molecular%20weight%20polycyclic%20aromatic%20hydrocarbons%20by%20size-exclusion%20chromatography%20and%20laser%20desorption/ionization%20time-of-flight%20mass%20spectrometry&rft.jtitle=Rapid%20communications%20in%20mass%20spectrometry&rft.au=Apicella,%20B.&rft.date=2006-01-01&rft.volume=20&rft.issue=7&rft.spage=1104&rft.epage=1108&rft.pages=1104-1108&rft.issn=0951-4198&rft.eissn=1097-0231&rft_id=info:doi/10.1002/rcm.2419&rft_dat=%3Cproquest_cross%3E29564389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29564389&rft_id=info:pmid/16521166&rfr_iscdi=true