Score-Based Counterfactual Generation for Interpretable Medical Image Classification and Lesion Localization
Deep neural networks (DNNs) have immense potential for precise clinical decision-making in the field of biomedical imaging. However, accessing high-quality data is crucial for ensuring the high-performance of DNNs. Obtaining medical imaging data is often challenging in terms of both quantity and qua...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2024-10, Vol.43 (10), p.3596-3607 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3607 |
---|---|
container_issue | 10 |
container_start_page | 3596 |
container_title | IEEE transactions on medical imaging |
container_volume | 43 |
creator | Wang, Ke Chen, Zicong Zhu, Mingjia Li, Zhetao Weng, Jian Gu, Tianlong |
description | Deep neural networks (DNNs) have immense potential for precise clinical decision-making in the field of biomedical imaging. However, accessing high-quality data is crucial for ensuring the high-performance of DNNs. Obtaining medical imaging data is often challenging in terms of both quantity and quality. To address these issues, we propose a score-based counterfactual generation (SCG) framework to create counterfactual images from latent space, to compensate for scarcity and imbalance of data. In addition, some uncertainties in external physical factors may introduce unnatural features and further affect the estimation of the true data distribution. Therefore, we integrated a learnable FuzzyBlock into the classifier of the proposed framework to manage these uncertainties. The proposed SCG framework can be applied to both classification and lesion localization tasks. The experimental results revealed a remarkable performance boost in classification tasks, achieving an average performance enhancement of 3-5% compared to previous state-of-the-art (SOTA) methods in interpretable lesion localization. |
doi_str_mv | 10.1109/TMI.2024.3375357 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2956163415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10464349</ieee_id><sourcerecordid>2956163415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-83e2655c13a227589893d77c590d2d6f7335beaa37a9ef0640f51119ed7d63e3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EglLYGRDKyJLib8cjRFAipWKgA1vkxhcUlMTFTgb49SRtQUx3unved3gQuiJ4QQjWd-tVtqCY8gVjSjChjtCMCJHEVPC3YzTDVCUxxpKeofMQPjAmXGB9is5YwqUUms5Q81o6D_GDCWCj1A1dD74yZT-YJlpCB970teuiyvkom35bD73ZNBCtwNblCGWteYcobUwIdTVedrjpbJRDmNbcjVT9vbtfoJPKNAEuD3OO1k-P6_Q5zl-WWXqfxyVVrI8TBlQKURJmKFUi0YlmVqlSaGyplZViTGzAGKaMhgpLjitBCNFglZUM2Bzd7mu33n0OEPqirUMJTWM6cEMoqBaSSMaJGFG8R0vvQvBQFVtft8Z_FQQXk-JiVFxMiouD4jFyc2gfNi3Yv8Cv0xG43gM1APzr45IzrtkP7YqAoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956163415</pqid></control><display><type>article</type><title>Score-Based Counterfactual Generation for Interpretable Medical Image Classification and Lesion Localization</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Ke ; Chen, Zicong ; Zhu, Mingjia ; Li, Zhetao ; Weng, Jian ; Gu, Tianlong</creator><creatorcontrib>Wang, Ke ; Chen, Zicong ; Zhu, Mingjia ; Li, Zhetao ; Weng, Jian ; Gu, Tianlong</creatorcontrib><description>Deep neural networks (DNNs) have immense potential for precise clinical decision-making in the field of biomedical imaging. However, accessing high-quality data is crucial for ensuring the high-performance of DNNs. Obtaining medical imaging data is often challenging in terms of both quantity and quality. To address these issues, we propose a score-based counterfactual generation (SCG) framework to create counterfactual images from latent space, to compensate for scarcity and imbalance of data. In addition, some uncertainties in external physical factors may introduce unnatural features and further affect the estimation of the true data distribution. Therefore, we integrated a learnable FuzzyBlock into the classifier of the proposed framework to manage these uncertainties. The proposed SCG framework can be applied to both classification and lesion localization tasks. The experimental results revealed a remarkable performance boost in classification tasks, achieving an average performance enhancement of 3-5% compared to previous state-of-the-art (SOTA) methods in interpretable lesion localization.</description><identifier>ISSN: 0278-0062</identifier><identifier>ISSN: 1558-254X</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2024.3375357</identifier><identifier>PMID: 38466592</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; classification ; counterfactual generalization ; Data models ; Deep Learning ; Fuzzy Logic ; fuzzy theory ; Generative adversarial networks ; Generators ; Humans ; Image Interpretation, Computer-Assisted - methods ; lesion localization ; Lesions ; Location awareness ; Magnetic Resonance Imaging - methods ; Neural Networks, Computer ; Score-based generative model ; Task analysis ; Uncertainty</subject><ispartof>IEEE transactions on medical imaging, 2024-10, Vol.43 (10), p.3596-3607</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-83e2655c13a227589893d77c590d2d6f7335beaa37a9ef0640f51119ed7d63e3</cites><orcidid>0000-0003-2460-7758 ; 0000-0002-7804-0286 ; 0000-0003-4067-8230 ; 0000-0002-1593-1292 ; 0000-0003-4438-8740 ; 0009-0003-2216-0902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10464349$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10464349$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38466592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Chen, Zicong</creatorcontrib><creatorcontrib>Zhu, Mingjia</creatorcontrib><creatorcontrib>Li, Zhetao</creatorcontrib><creatorcontrib>Weng, Jian</creatorcontrib><creatorcontrib>Gu, Tianlong</creatorcontrib><title>Score-Based Counterfactual Generation for Interpretable Medical Image Classification and Lesion Localization</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Deep neural networks (DNNs) have immense potential for precise clinical decision-making in the field of biomedical imaging. However, accessing high-quality data is crucial for ensuring the high-performance of DNNs. Obtaining medical imaging data is often challenging in terms of both quantity and quality. To address these issues, we propose a score-based counterfactual generation (SCG) framework to create counterfactual images from latent space, to compensate for scarcity and imbalance of data. In addition, some uncertainties in external physical factors may introduce unnatural features and further affect the estimation of the true data distribution. Therefore, we integrated a learnable FuzzyBlock into the classifier of the proposed framework to manage these uncertainties. The proposed SCG framework can be applied to both classification and lesion localization tasks. The experimental results revealed a remarkable performance boost in classification tasks, achieving an average performance enhancement of 3-5% compared to previous state-of-the-art (SOTA) methods in interpretable lesion localization.</description><subject>Algorithms</subject><subject>classification</subject><subject>counterfactual generalization</subject><subject>Data models</subject><subject>Deep Learning</subject><subject>Fuzzy Logic</subject><subject>fuzzy theory</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>lesion localization</subject><subject>Lesions</subject><subject>Location awareness</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Neural Networks, Computer</subject><subject>Score-based generative model</subject><subject>Task analysis</subject><subject>Uncertainty</subject><issn>0278-0062</issn><issn>1558-254X</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpNkD1PwzAQhi0EglLYGRDKyJLib8cjRFAipWKgA1vkxhcUlMTFTgb49SRtQUx3unved3gQuiJ4QQjWd-tVtqCY8gVjSjChjtCMCJHEVPC3YzTDVCUxxpKeofMQPjAmXGB9is5YwqUUms5Q81o6D_GDCWCj1A1dD74yZT-YJlpCB970teuiyvkom35bD73ZNBCtwNblCGWteYcobUwIdTVedrjpbJRDmNbcjVT9vbtfoJPKNAEuD3OO1k-P6_Q5zl-WWXqfxyVVrI8TBlQKURJmKFUi0YlmVqlSaGyplZViTGzAGKaMhgpLjitBCNFglZUM2Bzd7mu33n0OEPqirUMJTWM6cEMoqBaSSMaJGFG8R0vvQvBQFVtft8Z_FQQXk-JiVFxMiouD4jFyc2gfNi3Yv8Cv0xG43gM1APzr45IzrtkP7YqAoQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Wang, Ke</creator><creator>Chen, Zicong</creator><creator>Zhu, Mingjia</creator><creator>Li, Zhetao</creator><creator>Weng, Jian</creator><creator>Gu, Tianlong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2460-7758</orcidid><orcidid>https://orcid.org/0000-0002-7804-0286</orcidid><orcidid>https://orcid.org/0000-0003-4067-8230</orcidid><orcidid>https://orcid.org/0000-0002-1593-1292</orcidid><orcidid>https://orcid.org/0000-0003-4438-8740</orcidid><orcidid>https://orcid.org/0009-0003-2216-0902</orcidid></search><sort><creationdate>20241001</creationdate><title>Score-Based Counterfactual Generation for Interpretable Medical Image Classification and Lesion Localization</title><author>Wang, Ke ; Chen, Zicong ; Zhu, Mingjia ; Li, Zhetao ; Weng, Jian ; Gu, Tianlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-83e2655c13a227589893d77c590d2d6f7335beaa37a9ef0640f51119ed7d63e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>classification</topic><topic>counterfactual generalization</topic><topic>Data models</topic><topic>Deep Learning</topic><topic>Fuzzy Logic</topic><topic>fuzzy theory</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>lesion localization</topic><topic>Lesions</topic><topic>Location awareness</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Neural Networks, Computer</topic><topic>Score-based generative model</topic><topic>Task analysis</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Chen, Zicong</creatorcontrib><creatorcontrib>Zhu, Mingjia</creatorcontrib><creatorcontrib>Li, Zhetao</creatorcontrib><creatorcontrib>Weng, Jian</creatorcontrib><creatorcontrib>Gu, Tianlong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Ke</au><au>Chen, Zicong</au><au>Zhu, Mingjia</au><au>Li, Zhetao</au><au>Weng, Jian</au><au>Gu, Tianlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Score-Based Counterfactual Generation for Interpretable Medical Image Classification and Lesion Localization</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>43</volume><issue>10</issue><spage>3596</spage><epage>3607</epage><pages>3596-3607</pages><issn>0278-0062</issn><issn>1558-254X</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Deep neural networks (DNNs) have immense potential for precise clinical decision-making in the field of biomedical imaging. However, accessing high-quality data is crucial for ensuring the high-performance of DNNs. Obtaining medical imaging data is often challenging in terms of both quantity and quality. To address these issues, we propose a score-based counterfactual generation (SCG) framework to create counterfactual images from latent space, to compensate for scarcity and imbalance of data. In addition, some uncertainties in external physical factors may introduce unnatural features and further affect the estimation of the true data distribution. Therefore, we integrated a learnable FuzzyBlock into the classifier of the proposed framework to manage these uncertainties. The proposed SCG framework can be applied to both classification and lesion localization tasks. The experimental results revealed a remarkable performance boost in classification tasks, achieving an average performance enhancement of 3-5% compared to previous state-of-the-art (SOTA) methods in interpretable lesion localization.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38466592</pmid><doi>10.1109/TMI.2024.3375357</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2460-7758</orcidid><orcidid>https://orcid.org/0000-0002-7804-0286</orcidid><orcidid>https://orcid.org/0000-0003-4067-8230</orcidid><orcidid>https://orcid.org/0000-0002-1593-1292</orcidid><orcidid>https://orcid.org/0000-0003-4438-8740</orcidid><orcidid>https://orcid.org/0009-0003-2216-0902</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2024-10, Vol.43 (10), p.3596-3607 |
issn | 0278-0062 1558-254X 1558-254X |
language | eng |
recordid | cdi_proquest_miscellaneous_2956163415 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms classification counterfactual generalization Data models Deep Learning Fuzzy Logic fuzzy theory Generative adversarial networks Generators Humans Image Interpretation, Computer-Assisted - methods lesion localization Lesions Location awareness Magnetic Resonance Imaging - methods Neural Networks, Computer Score-based generative model Task analysis Uncertainty |
title | Score-Based Counterfactual Generation for Interpretable Medical Image Classification and Lesion Localization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A10%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Score-Based%20Counterfactual%20Generation%20for%20Interpretable%20Medical%20Image%20Classification%20and%20Lesion%20Localization&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Wang,%20Ke&rft.date=2024-10-01&rft.volume=43&rft.issue=10&rft.spage=3596&rft.epage=3607&rft.pages=3596-3607&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2024.3375357&rft_dat=%3Cproquest_RIE%3E2956163415%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956163415&rft_id=info:pmid/38466592&rft_ieee_id=10464349&rfr_iscdi=true |