Score-Based Counterfactual Generation for Interpretable Medical Image Classification and Lesion Localization

Deep neural networks (DNNs) have immense potential for precise clinical decision-making in the field of biomedical imaging. However, accessing high-quality data is crucial for ensuring the high-performance of DNNs. Obtaining medical imaging data is often challenging in terms of both quantity and qua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2024-10, Vol.43 (10), p.3596-3607
Hauptverfasser: Wang, Ke, Chen, Zicong, Zhu, Mingjia, Li, Zhetao, Weng, Jian, Gu, Tianlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3607
container_issue 10
container_start_page 3596
container_title IEEE transactions on medical imaging
container_volume 43
creator Wang, Ke
Chen, Zicong
Zhu, Mingjia
Li, Zhetao
Weng, Jian
Gu, Tianlong
description Deep neural networks (DNNs) have immense potential for precise clinical decision-making in the field of biomedical imaging. However, accessing high-quality data is crucial for ensuring the high-performance of DNNs. Obtaining medical imaging data is often challenging in terms of both quantity and quality. To address these issues, we propose a score-based counterfactual generation (SCG) framework to create counterfactual images from latent space, to compensate for scarcity and imbalance of data. In addition, some uncertainties in external physical factors may introduce unnatural features and further affect the estimation of the true data distribution. Therefore, we integrated a learnable FuzzyBlock into the classifier of the proposed framework to manage these uncertainties. The proposed SCG framework can be applied to both classification and lesion localization tasks. The experimental results revealed a remarkable performance boost in classification tasks, achieving an average performance enhancement of 3-5% compared to previous state-of-the-art (SOTA) methods in interpretable lesion localization.
doi_str_mv 10.1109/TMI.2024.3375357
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2956163415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10464349</ieee_id><sourcerecordid>2956163415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-83e2655c13a227589893d77c590d2d6f7335beaa37a9ef0640f51119ed7d63e3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EglLYGRDKyJLib8cjRFAipWKgA1vkxhcUlMTFTgb49SRtQUx3unved3gQuiJ4QQjWd-tVtqCY8gVjSjChjtCMCJHEVPC3YzTDVCUxxpKeofMQPjAmXGB9is5YwqUUms5Q81o6D_GDCWCj1A1dD74yZT-YJlpCB970teuiyvkom35bD73ZNBCtwNblCGWteYcobUwIdTVedrjpbJRDmNbcjVT9vbtfoJPKNAEuD3OO1k-P6_Q5zl-WWXqfxyVVrI8TBlQKURJmKFUi0YlmVqlSaGyplZViTGzAGKaMhgpLjitBCNFglZUM2Bzd7mu33n0OEPqirUMJTWM6cEMoqBaSSMaJGFG8R0vvQvBQFVtft8Z_FQQXk-JiVFxMiouD4jFyc2gfNi3Yv8Cv0xG43gM1APzr45IzrtkP7YqAoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956163415</pqid></control><display><type>article</type><title>Score-Based Counterfactual Generation for Interpretable Medical Image Classification and Lesion Localization</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Ke ; Chen, Zicong ; Zhu, Mingjia ; Li, Zhetao ; Weng, Jian ; Gu, Tianlong</creator><creatorcontrib>Wang, Ke ; Chen, Zicong ; Zhu, Mingjia ; Li, Zhetao ; Weng, Jian ; Gu, Tianlong</creatorcontrib><description>Deep neural networks (DNNs) have immense potential for precise clinical decision-making in the field of biomedical imaging. However, accessing high-quality data is crucial for ensuring the high-performance of DNNs. Obtaining medical imaging data is often challenging in terms of both quantity and quality. To address these issues, we propose a score-based counterfactual generation (SCG) framework to create counterfactual images from latent space, to compensate for scarcity and imbalance of data. In addition, some uncertainties in external physical factors may introduce unnatural features and further affect the estimation of the true data distribution. Therefore, we integrated a learnable FuzzyBlock into the classifier of the proposed framework to manage these uncertainties. The proposed SCG framework can be applied to both classification and lesion localization tasks. The experimental results revealed a remarkable performance boost in classification tasks, achieving an average performance enhancement of 3-5% compared to previous state-of-the-art (SOTA) methods in interpretable lesion localization.</description><identifier>ISSN: 0278-0062</identifier><identifier>ISSN: 1558-254X</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2024.3375357</identifier><identifier>PMID: 38466592</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; classification ; counterfactual generalization ; Data models ; Deep Learning ; Fuzzy Logic ; fuzzy theory ; Generative adversarial networks ; Generators ; Humans ; Image Interpretation, Computer-Assisted - methods ; lesion localization ; Lesions ; Location awareness ; Magnetic Resonance Imaging - methods ; Neural Networks, Computer ; Score-based generative model ; Task analysis ; Uncertainty</subject><ispartof>IEEE transactions on medical imaging, 2024-10, Vol.43 (10), p.3596-3607</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-83e2655c13a227589893d77c590d2d6f7335beaa37a9ef0640f51119ed7d63e3</cites><orcidid>0000-0003-2460-7758 ; 0000-0002-7804-0286 ; 0000-0003-4067-8230 ; 0000-0002-1593-1292 ; 0000-0003-4438-8740 ; 0009-0003-2216-0902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10464349$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10464349$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38466592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Chen, Zicong</creatorcontrib><creatorcontrib>Zhu, Mingjia</creatorcontrib><creatorcontrib>Li, Zhetao</creatorcontrib><creatorcontrib>Weng, Jian</creatorcontrib><creatorcontrib>Gu, Tianlong</creatorcontrib><title>Score-Based Counterfactual Generation for Interpretable Medical Image Classification and Lesion Localization</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Deep neural networks (DNNs) have immense potential for precise clinical decision-making in the field of biomedical imaging. However, accessing high-quality data is crucial for ensuring the high-performance of DNNs. Obtaining medical imaging data is often challenging in terms of both quantity and quality. To address these issues, we propose a score-based counterfactual generation (SCG) framework to create counterfactual images from latent space, to compensate for scarcity and imbalance of data. In addition, some uncertainties in external physical factors may introduce unnatural features and further affect the estimation of the true data distribution. Therefore, we integrated a learnable FuzzyBlock into the classifier of the proposed framework to manage these uncertainties. The proposed SCG framework can be applied to both classification and lesion localization tasks. The experimental results revealed a remarkable performance boost in classification tasks, achieving an average performance enhancement of 3-5% compared to previous state-of-the-art (SOTA) methods in interpretable lesion localization.</description><subject>Algorithms</subject><subject>classification</subject><subject>counterfactual generalization</subject><subject>Data models</subject><subject>Deep Learning</subject><subject>Fuzzy Logic</subject><subject>fuzzy theory</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>lesion localization</subject><subject>Lesions</subject><subject>Location awareness</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Neural Networks, Computer</subject><subject>Score-based generative model</subject><subject>Task analysis</subject><subject>Uncertainty</subject><issn>0278-0062</issn><issn>1558-254X</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpNkD1PwzAQhi0EglLYGRDKyJLib8cjRFAipWKgA1vkxhcUlMTFTgb49SRtQUx3unved3gQuiJ4QQjWd-tVtqCY8gVjSjChjtCMCJHEVPC3YzTDVCUxxpKeofMQPjAmXGB9is5YwqUUms5Q81o6D_GDCWCj1A1dD74yZT-YJlpCB970teuiyvkom35bD73ZNBCtwNblCGWteYcobUwIdTVedrjpbJRDmNbcjVT9vbtfoJPKNAEuD3OO1k-P6_Q5zl-WWXqfxyVVrI8TBlQKURJmKFUi0YlmVqlSaGyplZViTGzAGKaMhgpLjitBCNFglZUM2Bzd7mu33n0OEPqirUMJTWM6cEMoqBaSSMaJGFG8R0vvQvBQFVtft8Z_FQQXk-JiVFxMiouD4jFyc2gfNi3Yv8Cv0xG43gM1APzr45IzrtkP7YqAoQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Wang, Ke</creator><creator>Chen, Zicong</creator><creator>Zhu, Mingjia</creator><creator>Li, Zhetao</creator><creator>Weng, Jian</creator><creator>Gu, Tianlong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2460-7758</orcidid><orcidid>https://orcid.org/0000-0002-7804-0286</orcidid><orcidid>https://orcid.org/0000-0003-4067-8230</orcidid><orcidid>https://orcid.org/0000-0002-1593-1292</orcidid><orcidid>https://orcid.org/0000-0003-4438-8740</orcidid><orcidid>https://orcid.org/0009-0003-2216-0902</orcidid></search><sort><creationdate>20241001</creationdate><title>Score-Based Counterfactual Generation for Interpretable Medical Image Classification and Lesion Localization</title><author>Wang, Ke ; Chen, Zicong ; Zhu, Mingjia ; Li, Zhetao ; Weng, Jian ; Gu, Tianlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-83e2655c13a227589893d77c590d2d6f7335beaa37a9ef0640f51119ed7d63e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>classification</topic><topic>counterfactual generalization</topic><topic>Data models</topic><topic>Deep Learning</topic><topic>Fuzzy Logic</topic><topic>fuzzy theory</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>lesion localization</topic><topic>Lesions</topic><topic>Location awareness</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Neural Networks, Computer</topic><topic>Score-based generative model</topic><topic>Task analysis</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Chen, Zicong</creatorcontrib><creatorcontrib>Zhu, Mingjia</creatorcontrib><creatorcontrib>Li, Zhetao</creatorcontrib><creatorcontrib>Weng, Jian</creatorcontrib><creatorcontrib>Gu, Tianlong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Ke</au><au>Chen, Zicong</au><au>Zhu, Mingjia</au><au>Li, Zhetao</au><au>Weng, Jian</au><au>Gu, Tianlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Score-Based Counterfactual Generation for Interpretable Medical Image Classification and Lesion Localization</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>43</volume><issue>10</issue><spage>3596</spage><epage>3607</epage><pages>3596-3607</pages><issn>0278-0062</issn><issn>1558-254X</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Deep neural networks (DNNs) have immense potential for precise clinical decision-making in the field of biomedical imaging. However, accessing high-quality data is crucial for ensuring the high-performance of DNNs. Obtaining medical imaging data is often challenging in terms of both quantity and quality. To address these issues, we propose a score-based counterfactual generation (SCG) framework to create counterfactual images from latent space, to compensate for scarcity and imbalance of data. In addition, some uncertainties in external physical factors may introduce unnatural features and further affect the estimation of the true data distribution. Therefore, we integrated a learnable FuzzyBlock into the classifier of the proposed framework to manage these uncertainties. The proposed SCG framework can be applied to both classification and lesion localization tasks. The experimental results revealed a remarkable performance boost in classification tasks, achieving an average performance enhancement of 3-5% compared to previous state-of-the-art (SOTA) methods in interpretable lesion localization.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38466592</pmid><doi>10.1109/TMI.2024.3375357</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2460-7758</orcidid><orcidid>https://orcid.org/0000-0002-7804-0286</orcidid><orcidid>https://orcid.org/0000-0003-4067-8230</orcidid><orcidid>https://orcid.org/0000-0002-1593-1292</orcidid><orcidid>https://orcid.org/0000-0003-4438-8740</orcidid><orcidid>https://orcid.org/0009-0003-2216-0902</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2024-10, Vol.43 (10), p.3596-3607
issn 0278-0062
1558-254X
1558-254X
language eng
recordid cdi_proquest_miscellaneous_2956163415
source IEEE Electronic Library (IEL)
subjects Algorithms
classification
counterfactual generalization
Data models
Deep Learning
Fuzzy Logic
fuzzy theory
Generative adversarial networks
Generators
Humans
Image Interpretation, Computer-Assisted - methods
lesion localization
Lesions
Location awareness
Magnetic Resonance Imaging - methods
Neural Networks, Computer
Score-based generative model
Task analysis
Uncertainty
title Score-Based Counterfactual Generation for Interpretable Medical Image Classification and Lesion Localization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A10%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Score-Based%20Counterfactual%20Generation%20for%20Interpretable%20Medical%20Image%20Classification%20and%20Lesion%20Localization&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Wang,%20Ke&rft.date=2024-10-01&rft.volume=43&rft.issue=10&rft.spage=3596&rft.epage=3607&rft.pages=3596-3607&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2024.3375357&rft_dat=%3Cproquest_RIE%3E2956163415%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956163415&rft_id=info:pmid/38466592&rft_ieee_id=10464349&rfr_iscdi=true