Engineered Saccharomyces cerevisiae as a Biosynthetic Platform of Nucleotide Sugars

Glycosylation of biomolecules can greatly alter their physicochemical properties, cellular recognition, subcellular localization, and immunogenicity. Glycosylation reactions rely on the stepwise addition of sugars using nucleotide diphosphate (NDP)-sugars. Making these substrates readily available w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS synthetic biology 2024-04, Vol.13 (4), p.1215-1224
Hauptverfasser: Crowe, Samantha A., Zhao, Xixi, Gan, Fei, Chen, Xiaoyue, Hudson, Graham A., Astolfi, Maria C. T., Scheller, Henrik V., Liu, Yuzhong, Keasling, Jay D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1224
container_issue 4
container_start_page 1215
container_title ACS synthetic biology
container_volume 13
creator Crowe, Samantha A.
Zhao, Xixi
Gan, Fei
Chen, Xiaoyue
Hudson, Graham A.
Astolfi, Maria C. T.
Scheller, Henrik V.
Liu, Yuzhong
Keasling, Jay D.
description Glycosylation of biomolecules can greatly alter their physicochemical properties, cellular recognition, subcellular localization, and immunogenicity. Glycosylation reactions rely on the stepwise addition of sugars using nucleotide diphosphate (NDP)-sugars. Making these substrates readily available will greatly accelerate the characterization of new glycosylation reactions, elucidation of their underlying regulation mechanisms, and production of glycosylated molecules. In this work, we engineered Saccharomyces cerevisiae to heterologously express nucleotide sugar synthases to access a wide variety of uridine diphosphate (UDP)-sugars from simple starting materials (i.e., glucose and galactose). Specifically, activated glucose, uridine diphosphate d-glucose (UDP-d-Glc), can be converted to UDP-d-glucuronic acid (UDP-d-GlcA), UDP-d-xylose (UDP-d-Xyl), UDP-d-apiose (UDP-d-Api), UDP-d-fucose (UDP-d-Fuc), UDP-l-rhamnose (UDP-l-Rha), UDP-l-arabinopyranose (UDP-l-Arap), and UDP-l-arabinofuranose (UDP-l-Araf) using the corresponding nucleotide sugar synthases of plant and microbial origins. We also expressed genes encoding the salvage pathway to directly activate free sugars to achieve the biosynthesis of UDP-l-Arap and UDP-l-Araf. We observed strong inhibition of UDP-d-Glc 6-dehydrogenase (UGD) by the downstream product UDP-d-Xyl, which we circumvented using an induction system (Tet-On) to delay the production of UDP-d-Xyl to maintain the upstream UDP-sugar pool. Finally, we performed a time-course study using strains containing the biosynthetic pathways to produce five non-native UDP-sugars to elucidate their time-dependent interconversion and the role of UDP-d-Xyl in regulating UDP-sugar metabolism. These engineered yeast strains are a robust platform to (i) functionally characterize sugar synthases in vivo, (ii) biosynthesize a diverse selection of UDP-sugars, (iii) examine the regulation of intracellular UDP-sugar interconversions, and (iv) produce glycosylated secondary metabolites and proteins.
doi_str_mv 10.1021/acssynbio.3c00666
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2956163397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956163397</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-2ee27763d7386f1fbafb8b8e7dc415a44d40672b0ecdd41c89dee4354d55f9ed3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EolXpA3BBPnJJsePYSY5QlR-pAqTC2XLsTesqiYudIPXtMWpBnNjLrlYzs9oPoUtKZpSk9EbpEPZdZd2MaUKEECdonFJBE04EO_0zj9A0hC2JxTnjrDhHI1ZkIidUjNFq0a1tB-DB4JXSeqO8a_caAtZx92mDVYBVwArfWRfv9Rvorcavjepr51vsavw86AZcbw3g1bBWPlygs1o1AabHPkHv94u3-WOyfHl4mt8uE8VY2ScpQJrngpmcFaKmdaXqqqgKyI3OKFdZZjIi8rQioI3JqC5KA5AxnhnO6xIMm6DrQ-7Ou48BQi9bGzQ0jerADUGmJRdUxFt5lNKDVHsXgoda7rxtld9LSuQ3TvmLUx5xRs_VMX6oWjC_jh94UZAcBNErt27wXfz2n8AvvqSDeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956163397</pqid></control><display><type>article</type><title>Engineered Saccharomyces cerevisiae as a Biosynthetic Platform of Nucleotide Sugars</title><source>ACS Publications</source><creator>Crowe, Samantha A. ; Zhao, Xixi ; Gan, Fei ; Chen, Xiaoyue ; Hudson, Graham A. ; Astolfi, Maria C. T. ; Scheller, Henrik V. ; Liu, Yuzhong ; Keasling, Jay D.</creator><creatorcontrib>Crowe, Samantha A. ; Zhao, Xixi ; Gan, Fei ; Chen, Xiaoyue ; Hudson, Graham A. ; Astolfi, Maria C. T. ; Scheller, Henrik V. ; Liu, Yuzhong ; Keasling, Jay D.</creatorcontrib><description>Glycosylation of biomolecules can greatly alter their physicochemical properties, cellular recognition, subcellular localization, and immunogenicity. Glycosylation reactions rely on the stepwise addition of sugars using nucleotide diphosphate (NDP)-sugars. Making these substrates readily available will greatly accelerate the characterization of new glycosylation reactions, elucidation of their underlying regulation mechanisms, and production of glycosylated molecules. In this work, we engineered Saccharomyces cerevisiae to heterologously express nucleotide sugar synthases to access a wide variety of uridine diphosphate (UDP)-sugars from simple starting materials (i.e., glucose and galactose). Specifically, activated glucose, uridine diphosphate d-glucose (UDP-d-Glc), can be converted to UDP-d-glucuronic acid (UDP-d-GlcA), UDP-d-xylose (UDP-d-Xyl), UDP-d-apiose (UDP-d-Api), UDP-d-fucose (UDP-d-Fuc), UDP-l-rhamnose (UDP-l-Rha), UDP-l-arabinopyranose (UDP-l-Arap), and UDP-l-arabinofuranose (UDP-l-Araf) using the corresponding nucleotide sugar synthases of plant and microbial origins. We also expressed genes encoding the salvage pathway to directly activate free sugars to achieve the biosynthesis of UDP-l-Arap and UDP-l-Araf. We observed strong inhibition of UDP-d-Glc 6-dehydrogenase (UGD) by the downstream product UDP-d-Xyl, which we circumvented using an induction system (Tet-On) to delay the production of UDP-d-Xyl to maintain the upstream UDP-sugar pool. Finally, we performed a time-course study using strains containing the biosynthetic pathways to produce five non-native UDP-sugars to elucidate their time-dependent interconversion and the role of UDP-d-Xyl in regulating UDP-sugar metabolism. These engineered yeast strains are a robust platform to (i) functionally characterize sugar synthases in vivo, (ii) biosynthesize a diverse selection of UDP-sugars, (iii) examine the regulation of intracellular UDP-sugar interconversions, and (iv) produce glycosylated secondary metabolites and proteins.</description><identifier>ISSN: 2161-5063</identifier><identifier>EISSN: 2161-5063</identifier><identifier>DOI: 10.1021/acssynbio.3c00666</identifier><identifier>PMID: 38467016</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS synthetic biology, 2024-04, Vol.13 (4), p.1215-1224</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-2ee27763d7386f1fbafb8b8e7dc415a44d40672b0ecdd41c89dee4354d55f9ed3</citedby><cites>FETCH-LOGICAL-a339t-2ee27763d7386f1fbafb8b8e7dc415a44d40672b0ecdd41c89dee4354d55f9ed3</cites><orcidid>0000-0002-9900-5252 ; 0000-0003-1670-5251 ; 0000-0003-4170-6088 ; 0000-0001-5614-1951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssynbio.3c00666$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssynbio.3c00666$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38467016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crowe, Samantha A.</creatorcontrib><creatorcontrib>Zhao, Xixi</creatorcontrib><creatorcontrib>Gan, Fei</creatorcontrib><creatorcontrib>Chen, Xiaoyue</creatorcontrib><creatorcontrib>Hudson, Graham A.</creatorcontrib><creatorcontrib>Astolfi, Maria C. T.</creatorcontrib><creatorcontrib>Scheller, Henrik V.</creatorcontrib><creatorcontrib>Liu, Yuzhong</creatorcontrib><creatorcontrib>Keasling, Jay D.</creatorcontrib><title>Engineered Saccharomyces cerevisiae as a Biosynthetic Platform of Nucleotide Sugars</title><title>ACS synthetic biology</title><addtitle>ACS Synth. Biol</addtitle><description>Glycosylation of biomolecules can greatly alter their physicochemical properties, cellular recognition, subcellular localization, and immunogenicity. Glycosylation reactions rely on the stepwise addition of sugars using nucleotide diphosphate (NDP)-sugars. Making these substrates readily available will greatly accelerate the characterization of new glycosylation reactions, elucidation of their underlying regulation mechanisms, and production of glycosylated molecules. In this work, we engineered Saccharomyces cerevisiae to heterologously express nucleotide sugar synthases to access a wide variety of uridine diphosphate (UDP)-sugars from simple starting materials (i.e., glucose and galactose). Specifically, activated glucose, uridine diphosphate d-glucose (UDP-d-Glc), can be converted to UDP-d-glucuronic acid (UDP-d-GlcA), UDP-d-xylose (UDP-d-Xyl), UDP-d-apiose (UDP-d-Api), UDP-d-fucose (UDP-d-Fuc), UDP-l-rhamnose (UDP-l-Rha), UDP-l-arabinopyranose (UDP-l-Arap), and UDP-l-arabinofuranose (UDP-l-Araf) using the corresponding nucleotide sugar synthases of plant and microbial origins. We also expressed genes encoding the salvage pathway to directly activate free sugars to achieve the biosynthesis of UDP-l-Arap and UDP-l-Araf. We observed strong inhibition of UDP-d-Glc 6-dehydrogenase (UGD) by the downstream product UDP-d-Xyl, which we circumvented using an induction system (Tet-On) to delay the production of UDP-d-Xyl to maintain the upstream UDP-sugar pool. Finally, we performed a time-course study using strains containing the biosynthetic pathways to produce five non-native UDP-sugars to elucidate their time-dependent interconversion and the role of UDP-d-Xyl in regulating UDP-sugar metabolism. These engineered yeast strains are a robust platform to (i) functionally characterize sugar synthases in vivo, (ii) biosynthesize a diverse selection of UDP-sugars, (iii) examine the regulation of intracellular UDP-sugar interconversions, and (iv) produce glycosylated secondary metabolites and proteins.</description><issn>2161-5063</issn><issn>2161-5063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EolXpA3BBPnJJsePYSY5QlR-pAqTC2XLsTesqiYudIPXtMWpBnNjLrlYzs9oPoUtKZpSk9EbpEPZdZd2MaUKEECdonFJBE04EO_0zj9A0hC2JxTnjrDhHI1ZkIidUjNFq0a1tB-DB4JXSeqO8a_caAtZx92mDVYBVwArfWRfv9Rvorcavjepr51vsavw86AZcbw3g1bBWPlygs1o1AabHPkHv94u3-WOyfHl4mt8uE8VY2ScpQJrngpmcFaKmdaXqqqgKyI3OKFdZZjIi8rQioI3JqC5KA5AxnhnO6xIMm6DrQ-7Ou48BQi9bGzQ0jerADUGmJRdUxFt5lNKDVHsXgoda7rxtld9LSuQ3TvmLUx5xRs_VMX6oWjC_jh94UZAcBNErt27wXfz2n8AvvqSDeg</recordid><startdate>20240419</startdate><enddate>20240419</enddate><creator>Crowe, Samantha A.</creator><creator>Zhao, Xixi</creator><creator>Gan, Fei</creator><creator>Chen, Xiaoyue</creator><creator>Hudson, Graham A.</creator><creator>Astolfi, Maria C. T.</creator><creator>Scheller, Henrik V.</creator><creator>Liu, Yuzhong</creator><creator>Keasling, Jay D.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9900-5252</orcidid><orcidid>https://orcid.org/0000-0003-1670-5251</orcidid><orcidid>https://orcid.org/0000-0003-4170-6088</orcidid><orcidid>https://orcid.org/0000-0001-5614-1951</orcidid></search><sort><creationdate>20240419</creationdate><title>Engineered Saccharomyces cerevisiae as a Biosynthetic Platform of Nucleotide Sugars</title><author>Crowe, Samantha A. ; Zhao, Xixi ; Gan, Fei ; Chen, Xiaoyue ; Hudson, Graham A. ; Astolfi, Maria C. T. ; Scheller, Henrik V. ; Liu, Yuzhong ; Keasling, Jay D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-2ee27763d7386f1fbafb8b8e7dc415a44d40672b0ecdd41c89dee4354d55f9ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crowe, Samantha A.</creatorcontrib><creatorcontrib>Zhao, Xixi</creatorcontrib><creatorcontrib>Gan, Fei</creatorcontrib><creatorcontrib>Chen, Xiaoyue</creatorcontrib><creatorcontrib>Hudson, Graham A.</creatorcontrib><creatorcontrib>Astolfi, Maria C. T.</creatorcontrib><creatorcontrib>Scheller, Henrik V.</creatorcontrib><creatorcontrib>Liu, Yuzhong</creatorcontrib><creatorcontrib>Keasling, Jay D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS synthetic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crowe, Samantha A.</au><au>Zhao, Xixi</au><au>Gan, Fei</au><au>Chen, Xiaoyue</au><au>Hudson, Graham A.</au><au>Astolfi, Maria C. T.</au><au>Scheller, Henrik V.</au><au>Liu, Yuzhong</au><au>Keasling, Jay D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered Saccharomyces cerevisiae as a Biosynthetic Platform of Nucleotide Sugars</atitle><jtitle>ACS synthetic biology</jtitle><addtitle>ACS Synth. Biol</addtitle><date>2024-04-19</date><risdate>2024</risdate><volume>13</volume><issue>4</issue><spage>1215</spage><epage>1224</epage><pages>1215-1224</pages><issn>2161-5063</issn><eissn>2161-5063</eissn><abstract>Glycosylation of biomolecules can greatly alter their physicochemical properties, cellular recognition, subcellular localization, and immunogenicity. Glycosylation reactions rely on the stepwise addition of sugars using nucleotide diphosphate (NDP)-sugars. Making these substrates readily available will greatly accelerate the characterization of new glycosylation reactions, elucidation of their underlying regulation mechanisms, and production of glycosylated molecules. In this work, we engineered Saccharomyces cerevisiae to heterologously express nucleotide sugar synthases to access a wide variety of uridine diphosphate (UDP)-sugars from simple starting materials (i.e., glucose and galactose). Specifically, activated glucose, uridine diphosphate d-glucose (UDP-d-Glc), can be converted to UDP-d-glucuronic acid (UDP-d-GlcA), UDP-d-xylose (UDP-d-Xyl), UDP-d-apiose (UDP-d-Api), UDP-d-fucose (UDP-d-Fuc), UDP-l-rhamnose (UDP-l-Rha), UDP-l-arabinopyranose (UDP-l-Arap), and UDP-l-arabinofuranose (UDP-l-Araf) using the corresponding nucleotide sugar synthases of plant and microbial origins. We also expressed genes encoding the salvage pathway to directly activate free sugars to achieve the biosynthesis of UDP-l-Arap and UDP-l-Araf. We observed strong inhibition of UDP-d-Glc 6-dehydrogenase (UGD) by the downstream product UDP-d-Xyl, which we circumvented using an induction system (Tet-On) to delay the production of UDP-d-Xyl to maintain the upstream UDP-sugar pool. Finally, we performed a time-course study using strains containing the biosynthetic pathways to produce five non-native UDP-sugars to elucidate their time-dependent interconversion and the role of UDP-d-Xyl in regulating UDP-sugar metabolism. These engineered yeast strains are a robust platform to (i) functionally characterize sugar synthases in vivo, (ii) biosynthesize a diverse selection of UDP-sugars, (iii) examine the regulation of intracellular UDP-sugar interconversions, and (iv) produce glycosylated secondary metabolites and proteins.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38467016</pmid><doi>10.1021/acssynbio.3c00666</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9900-5252</orcidid><orcidid>https://orcid.org/0000-0003-1670-5251</orcidid><orcidid>https://orcid.org/0000-0003-4170-6088</orcidid><orcidid>https://orcid.org/0000-0001-5614-1951</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2161-5063
ispartof ACS synthetic biology, 2024-04, Vol.13 (4), p.1215-1224
issn 2161-5063
2161-5063
language eng
recordid cdi_proquest_miscellaneous_2956163397
source ACS Publications
title Engineered Saccharomyces cerevisiae as a Biosynthetic Platform of Nucleotide Sugars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20Saccharomyces%20cerevisiae%20as%20a%20Biosynthetic%20Platform%20of%20Nucleotide%20Sugars&rft.jtitle=ACS%20synthetic%20biology&rft.au=Crowe,%20Samantha%20A.&rft.date=2024-04-19&rft.volume=13&rft.issue=4&rft.spage=1215&rft.epage=1224&rft.pages=1215-1224&rft.issn=2161-5063&rft.eissn=2161-5063&rft_id=info:doi/10.1021/acssynbio.3c00666&rft_dat=%3Cproquest_cross%3E2956163397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956163397&rft_id=info:pmid/38467016&rfr_iscdi=true