Mixed-material layer formation on graphite exposed to deuterium plasmas containing beryllium
Mixed-materials formation and properties are examined for graphite-target surfaces exposed to deuterium plasma containing small amounts of ionized beryllium. Targets are exposed to plasma in the PISCES-B divertor plasma simulator under conditions relevant to the operation of the graphite-strike plat...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2006-11, Vol.358 (2), p.96-105 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105 |
---|---|
container_issue | 2 |
container_start_page | 96 |
container_title | Journal of nuclear materials |
container_volume | 358 |
creator | Baldwin, M.J. Doerner, R.P. Nishijima, D. Schmid, K. Whyte, D.G. Kulpin, J.G. Wright, G. |
description | Mixed-materials formation and properties are examined for graphite-target surfaces exposed to deuterium plasma containing small amounts of ionized beryllium. Targets are exposed to plasma in the PISCES-B divertor plasma simulator under conditions relevant to the operation of the graphite-strike plates in ITER. X-ray photoelectron spectroscopy (XPS) is used to analyze targets following exposure and reveals chemical reaction of the surface graphite with the incident-plasma beryllium flux. Partial surface carbidization is observed for a target exposure temperature of 450
K and full surface carbidization with Be
2C at temperatures higher than this up to 1000
K. Rutherford backscattering spectrometry (RBS) data reveal a mixed-material layer of Be/C of varying-elemental concentration up to ∼1
μm thick. Hydrogen-isotope retention in targets is measured using thermal-desorption spectrometry (TDS) and D-
3He nuclear-reaction analysis (NRA). Targets exposed to deuterium plasma exhibit retention consistent with values in the literature but extrapolated to the higher ion fluences possible in PISCES simulators. In contrast, targets with a mixed-material Be/C layer are found to have increased retention by a factor of ∼4 at low temperature ∼300
K and ∼2 at higher temperature ∼1000
K. Simulation of NRA spectra reveals that most of the increased inventory is accumulated in the mixed layer. |
doi_str_mv | 10.1016/j.jnucmat.2006.06.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29557694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311506003941</els_id><sourcerecordid>29557694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-96e23b8fcef14c36911114e0fec8946e6e6258bc43c43a214089eb9c9cde0d953</originalsourceid><addsrcrecordid>eNqFkEFr3DAQhUVoINukP6GgS3PzZiRLjnQqIbRJYUMvzS0gtPJ4q0W2XMkuu_--MrvQYzQPBKPv6cEj5DODNQPW3O3X-2F2vZ3WHKBZL2LigqyYuq8roTh8ICsAzquaMXlFPua8BwCpQa7I24s_YFsVMyZvAw32iIl2MZWNjwMt2iU7_vYTUjyMMWNLp0hbnBfD3NMx2NzbTF0cJusHP-zoFtMxhPJ4Qy47GzJ-Ot_X5PX7t1-Pz9Xm59OPx4dN5QSwqdIN8nqrOocdE65uNCtHIHTolBYNluFSbZ2oiyxnApTGrXbatQitlvU1uT39O6b4Z8Y8md5nhyHYAeOcDddS3jdavA-WlpTiqoDyBLoUc07YmTH53qajYWCW0s3enEs3S-lmEVsCvpwDbHY2dMkOzuf_ZsXrppFQuK8nDkstfz0mk53HwWHrE7rJtNG_k_QP612cKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20228828</pqid></control><display><type>article</type><title>Mixed-material layer formation on graphite exposed to deuterium plasmas containing beryllium</title><source>Elsevier ScienceDirect Journals</source><creator>Baldwin, M.J. ; Doerner, R.P. ; Nishijima, D. ; Schmid, K. ; Whyte, D.G. ; Kulpin, J.G. ; Wright, G.</creator><creatorcontrib>Baldwin, M.J. ; Doerner, R.P. ; Nishijima, D. ; Schmid, K. ; Whyte, D.G. ; Kulpin, J.G. ; Wright, G.</creatorcontrib><description>Mixed-materials formation and properties are examined for graphite-target surfaces exposed to deuterium plasma containing small amounts of ionized beryllium. Targets are exposed to plasma in the PISCES-B divertor plasma simulator under conditions relevant to the operation of the graphite-strike plates in ITER. X-ray photoelectron spectroscopy (XPS) is used to analyze targets following exposure and reveals chemical reaction of the surface graphite with the incident-plasma beryllium flux. Partial surface carbidization is observed for a target exposure temperature of 450
K and full surface carbidization with Be
2C at temperatures higher than this up to 1000
K. Rutherford backscattering spectrometry (RBS) data reveal a mixed-material layer of Be/C of varying-elemental concentration up to ∼1
μm thick. Hydrogen-isotope retention in targets is measured using thermal-desorption spectrometry (TDS) and D-
3He nuclear-reaction analysis (NRA). Targets exposed to deuterium plasma exhibit retention consistent with values in the literature but extrapolated to the higher ion fluences possible in PISCES simulators. In contrast, targets with a mixed-material Be/C layer are found to have increased retention by a factor of ∼4 at low temperature ∼300
K and ∼2 at higher temperature ∼1000
K. Simulation of NRA spectra reveals that most of the increased inventory is accumulated in the mixed layer.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2006.06.014</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Installations for energy generation and conversion: thermal and electrical energy</subject><ispartof>Journal of nuclear materials, 2006-11, Vol.358 (2), p.96-105</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-96e23b8fcef14c36911114e0fec8946e6e6258bc43c43a214089eb9c9cde0d953</citedby><cites>FETCH-LOGICAL-c401t-96e23b8fcef14c36911114e0fec8946e6e6258bc43c43a214089eb9c9cde0d953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022311506003941$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18236650$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baldwin, M.J.</creatorcontrib><creatorcontrib>Doerner, R.P.</creatorcontrib><creatorcontrib>Nishijima, D.</creatorcontrib><creatorcontrib>Schmid, K.</creatorcontrib><creatorcontrib>Whyte, D.G.</creatorcontrib><creatorcontrib>Kulpin, J.G.</creatorcontrib><creatorcontrib>Wright, G.</creatorcontrib><title>Mixed-material layer formation on graphite exposed to deuterium plasmas containing beryllium</title><title>Journal of nuclear materials</title><description>Mixed-materials formation and properties are examined for graphite-target surfaces exposed to deuterium plasma containing small amounts of ionized beryllium. Targets are exposed to plasma in the PISCES-B divertor plasma simulator under conditions relevant to the operation of the graphite-strike plates in ITER. X-ray photoelectron spectroscopy (XPS) is used to analyze targets following exposure and reveals chemical reaction of the surface graphite with the incident-plasma beryllium flux. Partial surface carbidization is observed for a target exposure temperature of 450
K and full surface carbidization with Be
2C at temperatures higher than this up to 1000
K. Rutherford backscattering spectrometry (RBS) data reveal a mixed-material layer of Be/C of varying-elemental concentration up to ∼1
μm thick. Hydrogen-isotope retention in targets is measured using thermal-desorption spectrometry (TDS) and D-
3He nuclear-reaction analysis (NRA). Targets exposed to deuterium plasma exhibit retention consistent with values in the literature but extrapolated to the higher ion fluences possible in PISCES simulators. In contrast, targets with a mixed-material Be/C layer are found to have increased retention by a factor of ∼4 at low temperature ∼300
K and ∼2 at higher temperature ∼1000
K. Simulation of NRA spectra reveals that most of the increased inventory is accumulated in the mixed layer.</description><subject>Applied sciences</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkEFr3DAQhUVoINukP6GgS3PzZiRLjnQqIbRJYUMvzS0gtPJ4q0W2XMkuu_--MrvQYzQPBKPv6cEj5DODNQPW3O3X-2F2vZ3WHKBZL2LigqyYuq8roTh8ICsAzquaMXlFPua8BwCpQa7I24s_YFsVMyZvAw32iIl2MZWNjwMt2iU7_vYTUjyMMWNLp0hbnBfD3NMx2NzbTF0cJusHP-zoFtMxhPJ4Qy47GzJ-Ot_X5PX7t1-Pz9Xm59OPx4dN5QSwqdIN8nqrOocdE65uNCtHIHTolBYNluFSbZ2oiyxnApTGrXbatQitlvU1uT39O6b4Z8Y8md5nhyHYAeOcDddS3jdavA-WlpTiqoDyBLoUc07YmTH53qajYWCW0s3enEs3S-lmEVsCvpwDbHY2dMkOzuf_ZsXrppFQuK8nDkstfz0mk53HwWHrE7rJtNG_k_QP612cKg</recordid><startdate>20061130</startdate><enddate>20061130</enddate><creator>Baldwin, M.J.</creator><creator>Doerner, R.P.</creator><creator>Nishijima, D.</creator><creator>Schmid, K.</creator><creator>Whyte, D.G.</creator><creator>Kulpin, J.G.</creator><creator>Wright, G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20061130</creationdate><title>Mixed-material layer formation on graphite exposed to deuterium plasmas containing beryllium</title><author>Baldwin, M.J. ; Doerner, R.P. ; Nishijima, D. ; Schmid, K. ; Whyte, D.G. ; Kulpin, J.G. ; Wright, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-96e23b8fcef14c36911114e0fec8946e6e6258bc43c43a214089eb9c9cde0d953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baldwin, M.J.</creatorcontrib><creatorcontrib>Doerner, R.P.</creatorcontrib><creatorcontrib>Nishijima, D.</creatorcontrib><creatorcontrib>Schmid, K.</creatorcontrib><creatorcontrib>Whyte, D.G.</creatorcontrib><creatorcontrib>Kulpin, J.G.</creatorcontrib><creatorcontrib>Wright, G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baldwin, M.J.</au><au>Doerner, R.P.</au><au>Nishijima, D.</au><au>Schmid, K.</au><au>Whyte, D.G.</au><au>Kulpin, J.G.</au><au>Wright, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed-material layer formation on graphite exposed to deuterium plasmas containing beryllium</atitle><jtitle>Journal of nuclear materials</jtitle><date>2006-11-30</date><risdate>2006</risdate><volume>358</volume><issue>2</issue><spage>96</spage><epage>105</epage><pages>96-105</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>Mixed-materials formation and properties are examined for graphite-target surfaces exposed to deuterium plasma containing small amounts of ionized beryllium. Targets are exposed to plasma in the PISCES-B divertor plasma simulator under conditions relevant to the operation of the graphite-strike plates in ITER. X-ray photoelectron spectroscopy (XPS) is used to analyze targets following exposure and reveals chemical reaction of the surface graphite with the incident-plasma beryllium flux. Partial surface carbidization is observed for a target exposure temperature of 450
K and full surface carbidization with Be
2C at temperatures higher than this up to 1000
K. Rutherford backscattering spectrometry (RBS) data reveal a mixed-material layer of Be/C of varying-elemental concentration up to ∼1
μm thick. Hydrogen-isotope retention in targets is measured using thermal-desorption spectrometry (TDS) and D-
3He nuclear-reaction analysis (NRA). Targets exposed to deuterium plasma exhibit retention consistent with values in the literature but extrapolated to the higher ion fluences possible in PISCES simulators. In contrast, targets with a mixed-material Be/C layer are found to have increased retention by a factor of ∼4 at low temperature ∼300
K and ∼2 at higher temperature ∼1000
K. Simulation of NRA spectra reveals that most of the increased inventory is accumulated in the mixed layer.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2006.06.014</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2006-11, Vol.358 (2), p.96-105 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_proquest_miscellaneous_29557694 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Controled nuclear fusion plants Energy Energy. Thermal use of fuels Exact sciences and technology Installations for energy generation and conversion: thermal and electrical energy |
title | Mixed-material layer formation on graphite exposed to deuterium plasmas containing beryllium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T02%3A24%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed-material%20layer%20formation%20on%20graphite%20exposed%20to%20deuterium%20plasmas%20containing%20beryllium&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Baldwin,%20M.J.&rft.date=2006-11-30&rft.volume=358&rft.issue=2&rft.spage=96&rft.epage=105&rft.pages=96-105&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2006.06.014&rft_dat=%3Cproquest_cross%3E29557694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20228828&rft_id=info:pmid/&rft_els_id=S0022311506003941&rfr_iscdi=true |