PKSEA-Net: A prior knowledge supervised edge-aware multi-task network for retinal arteriolar morphometry
Retinal fundus images serve as a non-invasive modality to obtain information pertaining to retinal vessels through fundus photography, thereby offering insights into cardiovascular and cerebrovascular diseases. Retinal arteriolar morphometry has emerged as the most convenient and fundamental clinica...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2024-04, Vol.172, p.108255, Article 108255 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 108255 |
container_title | Computers in biology and medicine |
container_volume | 172 |
creator | Huang, Chongjun Wang, Zhuoran Yuan, Guohui Xiong, Zhiming Hu, Jing Tong, Yuhua |
description | Retinal fundus images serve as a non-invasive modality to obtain information pertaining to retinal vessels through fundus photography, thereby offering insights into cardiovascular and cerebrovascular diseases. Retinal arteriolar morphometry has emerged as the most convenient and fundamental clinical methodology in the realm of patient screening and diagnosis. Nevertheless, the analysis of retinal arterioles is challenging attributable to imaging noise, stochastic fuzzy characteristics, and blurred boundaries proximal to blood vessels. In response to these limitations, we introduce an innovative methodology, named PKSEA-Net, which aims to improve segmentation accuracy by enhancing the perception of edge information in retinal fundus images. PKSEA-Net employs the universal architecture PVT-v2 as the encoder, complemented by a novel decoder architecture consisting of an Edge-Aware Block (EAB) and a Pyramid Feature Fusion Module (PFFM). The EAB block incorporates prior knowledge for supervision and multi-query for multi-task learning, with supervision information derived from an enhanced Full Width at Half Maximum (FWHM) algorithm and gradient map. Moreover, PFFM efficiently integrates multi-scale features through a novel attention fusion method. Additionally, we have collected a Retinal Cross-Sectional Vessel (RCSV) dataset derived from approximately 200 patients in Quzhou People’s Hospital to serve as the benchmark dataset. Comparative evaluations with several state-of-the-art (SOTA) networks confirm that PKSEA-Net achieves exceptional experimental performance, thereby establishing its status as a SOTA approach for precise boundary delineation and retinal vessel segmentation.
•An optimized Full Width at Half Maximum (FWHM) algorithm precisely measures longitudinal diameter and provides effective network supervision.•An innovative feature decoder, combining gradient information through EAB and fusing multi-scale information using PFFM, enhances edge perception with increased accuracy.•Multi-query facilitates multi-task learning, encompassing fine segmentation and continuous diameter prediction.•PKSEA-Net demonstrates excellent clinical results and competitive performance against state-of-the-art (SOTA) methods on the new benchmark dataset RCSV. |
doi_str_mv | 10.1016/j.compbiomed.2024.108255 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2955266185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482524003391</els_id><sourcerecordid>2955266185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-9e2649b1d143270891dca7187eaa086704bac9c6a2b01df4f92ed8ee51f64d7e3</originalsourceid><addsrcrecordid>eNqFkUFv3CAQhVHUqtmk_QsRUi69eAMYY9PbNkrTKlFbqckZYRg37NrGBZxV_n2xNlGkXnpCMN-bYd5DCFOypoSKi-3a-GFqnR_ArhlhPD83rKqO0Io2tSxIVfI3aEUIJQXPhWN0EuOWEMJJSd6h47LhggopVujh582vq03xHdInvMFTcD7g3ej3PdjfgOM8QXh0ESxe7oXe6wB4mPvkiqTjDo-Q9j7scJdlAZIbdY91SJD79DrgwYfpIX8yhaf36G2n-wgfns9TdP_l6u7ya3H74_rb5ea2MEywVEhggsuWWspLVpNGUmt0nZcCrUkjasJbbaQRmrWE2o53koFtACraCW5rKE_Rx0PfKfg_M8SkBhcN9L0ewc9RMVlVTAjaVBk9_wfd-jnkFRaqLjmVpJKZag6UCT7GAJ3KLg06PClK1JKG2qrXNNSShjqkkaVnzwPmdqm9CF_sz8DnAwDZkUcHQUXjYDRgXQCTlPXu_1P-AhPEoOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973419059</pqid></control><display><type>article</type><title>PKSEA-Net: A prior knowledge supervised edge-aware multi-task network for retinal arteriolar morphometry</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Huang, Chongjun ; Wang, Zhuoran ; Yuan, Guohui ; Xiong, Zhiming ; Hu, Jing ; Tong, Yuhua</creator><creatorcontrib>Huang, Chongjun ; Wang, Zhuoran ; Yuan, Guohui ; Xiong, Zhiming ; Hu, Jing ; Tong, Yuhua</creatorcontrib><description>Retinal fundus images serve as a non-invasive modality to obtain information pertaining to retinal vessels through fundus photography, thereby offering insights into cardiovascular and cerebrovascular diseases. Retinal arteriolar morphometry has emerged as the most convenient and fundamental clinical methodology in the realm of patient screening and diagnosis. Nevertheless, the analysis of retinal arterioles is challenging attributable to imaging noise, stochastic fuzzy characteristics, and blurred boundaries proximal to blood vessels. In response to these limitations, we introduce an innovative methodology, named PKSEA-Net, which aims to improve segmentation accuracy by enhancing the perception of edge information in retinal fundus images. PKSEA-Net employs the universal architecture PVT-v2 as the encoder, complemented by a novel decoder architecture consisting of an Edge-Aware Block (EAB) and a Pyramid Feature Fusion Module (PFFM). The EAB block incorporates prior knowledge for supervision and multi-query for multi-task learning, with supervision information derived from an enhanced Full Width at Half Maximum (FWHM) algorithm and gradient map. Moreover, PFFM efficiently integrates multi-scale features through a novel attention fusion method. Additionally, we have collected a Retinal Cross-Sectional Vessel (RCSV) dataset derived from approximately 200 patients in Quzhou People’s Hospital to serve as the benchmark dataset. Comparative evaluations with several state-of-the-art (SOTA) networks confirm that PKSEA-Net achieves exceptional experimental performance, thereby establishing its status as a SOTA approach for precise boundary delineation and retinal vessel segmentation.
•An optimized Full Width at Half Maximum (FWHM) algorithm precisely measures longitudinal diameter and provides effective network supervision.•An innovative feature decoder, combining gradient information through EAB and fusing multi-scale information using PFFM, enhances edge perception with increased accuracy.•Multi-query facilitates multi-task learning, encompassing fine segmentation and continuous diameter prediction.•PKSEA-Net demonstrates excellent clinical results and competitive performance against state-of-the-art (SOTA) methods on the new benchmark dataset RCSV.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2024.108255</identifier><identifier>PMID: 38461696</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Accuracy ; Algorithms ; Arterioles ; Arterioles - diagnostic imaging ; Automation ; Biology ; Blood vessels ; Cerebrovascular diseases ; Cross-Sectional Studies ; Datasets ; Edge aware ; Hospitals ; Humans ; Image enhancement ; Image Processing, Computer-Assisted ; Knowledge ; Learning ; Medical imaging ; Medical screening ; Morphometry ; Multi-task learning ; Patients ; Photography ; Prior knowledge supervision ; Retina ; Retinal arteriolar morphometry ; Retinal Vessels - diagnostic imaging ; Segmentation ; Supervision ; Tomography ; Vascular diseases ; Vision transformer</subject><ispartof>Computers in biology and medicine, 2024-04, Vol.172, p.108255, Article 108255</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><rights>2024. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262t-9e2649b1d143270891dca7187eaa086704bac9c6a2b01df4f92ed8ee51f64d7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482524003391$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38461696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Chongjun</creatorcontrib><creatorcontrib>Wang, Zhuoran</creatorcontrib><creatorcontrib>Yuan, Guohui</creatorcontrib><creatorcontrib>Xiong, Zhiming</creatorcontrib><creatorcontrib>Hu, Jing</creatorcontrib><creatorcontrib>Tong, Yuhua</creatorcontrib><title>PKSEA-Net: A prior knowledge supervised edge-aware multi-task network for retinal arteriolar morphometry</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Retinal fundus images serve as a non-invasive modality to obtain information pertaining to retinal vessels through fundus photography, thereby offering insights into cardiovascular and cerebrovascular diseases. Retinal arteriolar morphometry has emerged as the most convenient and fundamental clinical methodology in the realm of patient screening and diagnosis. Nevertheless, the analysis of retinal arterioles is challenging attributable to imaging noise, stochastic fuzzy characteristics, and blurred boundaries proximal to blood vessels. In response to these limitations, we introduce an innovative methodology, named PKSEA-Net, which aims to improve segmentation accuracy by enhancing the perception of edge information in retinal fundus images. PKSEA-Net employs the universal architecture PVT-v2 as the encoder, complemented by a novel decoder architecture consisting of an Edge-Aware Block (EAB) and a Pyramid Feature Fusion Module (PFFM). The EAB block incorporates prior knowledge for supervision and multi-query for multi-task learning, with supervision information derived from an enhanced Full Width at Half Maximum (FWHM) algorithm and gradient map. Moreover, PFFM efficiently integrates multi-scale features through a novel attention fusion method. Additionally, we have collected a Retinal Cross-Sectional Vessel (RCSV) dataset derived from approximately 200 patients in Quzhou People’s Hospital to serve as the benchmark dataset. Comparative evaluations with several state-of-the-art (SOTA) networks confirm that PKSEA-Net achieves exceptional experimental performance, thereby establishing its status as a SOTA approach for precise boundary delineation and retinal vessel segmentation.
•An optimized Full Width at Half Maximum (FWHM) algorithm precisely measures longitudinal diameter and provides effective network supervision.•An innovative feature decoder, combining gradient information through EAB and fusing multi-scale information using PFFM, enhances edge perception with increased accuracy.•Multi-query facilitates multi-task learning, encompassing fine segmentation and continuous diameter prediction.•PKSEA-Net demonstrates excellent clinical results and competitive performance against state-of-the-art (SOTA) methods on the new benchmark dataset RCSV.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Arterioles</subject><subject>Arterioles - diagnostic imaging</subject><subject>Automation</subject><subject>Biology</subject><subject>Blood vessels</subject><subject>Cerebrovascular diseases</subject><subject>Cross-Sectional Studies</subject><subject>Datasets</subject><subject>Edge aware</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Image enhancement</subject><subject>Image Processing, Computer-Assisted</subject><subject>Knowledge</subject><subject>Learning</subject><subject>Medical imaging</subject><subject>Medical screening</subject><subject>Morphometry</subject><subject>Multi-task learning</subject><subject>Patients</subject><subject>Photography</subject><subject>Prior knowledge supervision</subject><subject>Retina</subject><subject>Retinal arteriolar morphometry</subject><subject>Retinal Vessels - diagnostic imaging</subject><subject>Segmentation</subject><subject>Supervision</subject><subject>Tomography</subject><subject>Vascular diseases</subject><subject>Vision transformer</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv3CAQhVHUqtmk_QsRUi69eAMYY9PbNkrTKlFbqckZYRg37NrGBZxV_n2xNlGkXnpCMN-bYd5DCFOypoSKi-3a-GFqnR_ArhlhPD83rKqO0Io2tSxIVfI3aEUIJQXPhWN0EuOWEMJJSd6h47LhggopVujh582vq03xHdInvMFTcD7g3ej3PdjfgOM8QXh0ESxe7oXe6wB4mPvkiqTjDo-Q9j7scJdlAZIbdY91SJD79DrgwYfpIX8yhaf36G2n-wgfns9TdP_l6u7ya3H74_rb5ea2MEywVEhggsuWWspLVpNGUmt0nZcCrUkjasJbbaQRmrWE2o53koFtACraCW5rKE_Rx0PfKfg_M8SkBhcN9L0ewc9RMVlVTAjaVBk9_wfd-jnkFRaqLjmVpJKZag6UCT7GAJ3KLg06PClK1JKG2qrXNNSShjqkkaVnzwPmdqm9CF_sz8DnAwDZkUcHQUXjYDRgXQCTlPXu_1P-AhPEoOA</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Huang, Chongjun</creator><creator>Wang, Zhuoran</creator><creator>Yuan, Guohui</creator><creator>Xiong, Zhiming</creator><creator>Hu, Jing</creator><creator>Tong, Yuhua</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202404</creationdate><title>PKSEA-Net: A prior knowledge supervised edge-aware multi-task network for retinal arteriolar morphometry</title><author>Huang, Chongjun ; Wang, Zhuoran ; Yuan, Guohui ; Xiong, Zhiming ; Hu, Jing ; Tong, Yuhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-9e2649b1d143270891dca7187eaa086704bac9c6a2b01df4f92ed8ee51f64d7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Arterioles</topic><topic>Arterioles - diagnostic imaging</topic><topic>Automation</topic><topic>Biology</topic><topic>Blood vessels</topic><topic>Cerebrovascular diseases</topic><topic>Cross-Sectional Studies</topic><topic>Datasets</topic><topic>Edge aware</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Image enhancement</topic><topic>Image Processing, Computer-Assisted</topic><topic>Knowledge</topic><topic>Learning</topic><topic>Medical imaging</topic><topic>Medical screening</topic><topic>Morphometry</topic><topic>Multi-task learning</topic><topic>Patients</topic><topic>Photography</topic><topic>Prior knowledge supervision</topic><topic>Retina</topic><topic>Retinal arteriolar morphometry</topic><topic>Retinal Vessels - diagnostic imaging</topic><topic>Segmentation</topic><topic>Supervision</topic><topic>Tomography</topic><topic>Vascular diseases</topic><topic>Vision transformer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Chongjun</creatorcontrib><creatorcontrib>Wang, Zhuoran</creatorcontrib><creatorcontrib>Yuan, Guohui</creatorcontrib><creatorcontrib>Xiong, Zhiming</creatorcontrib><creatorcontrib>Hu, Jing</creatorcontrib><creatorcontrib>Tong, Yuhua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Chongjun</au><au>Wang, Zhuoran</au><au>Yuan, Guohui</au><au>Xiong, Zhiming</au><au>Hu, Jing</au><au>Tong, Yuhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PKSEA-Net: A prior knowledge supervised edge-aware multi-task network for retinal arteriolar morphometry</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-04</date><risdate>2024</risdate><volume>172</volume><spage>108255</spage><pages>108255-</pages><artnum>108255</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>Retinal fundus images serve as a non-invasive modality to obtain information pertaining to retinal vessels through fundus photography, thereby offering insights into cardiovascular and cerebrovascular diseases. Retinal arteriolar morphometry has emerged as the most convenient and fundamental clinical methodology in the realm of patient screening and diagnosis. Nevertheless, the analysis of retinal arterioles is challenging attributable to imaging noise, stochastic fuzzy characteristics, and blurred boundaries proximal to blood vessels. In response to these limitations, we introduce an innovative methodology, named PKSEA-Net, which aims to improve segmentation accuracy by enhancing the perception of edge information in retinal fundus images. PKSEA-Net employs the universal architecture PVT-v2 as the encoder, complemented by a novel decoder architecture consisting of an Edge-Aware Block (EAB) and a Pyramid Feature Fusion Module (PFFM). The EAB block incorporates prior knowledge for supervision and multi-query for multi-task learning, with supervision information derived from an enhanced Full Width at Half Maximum (FWHM) algorithm and gradient map. Moreover, PFFM efficiently integrates multi-scale features through a novel attention fusion method. Additionally, we have collected a Retinal Cross-Sectional Vessel (RCSV) dataset derived from approximately 200 patients in Quzhou People’s Hospital to serve as the benchmark dataset. Comparative evaluations with several state-of-the-art (SOTA) networks confirm that PKSEA-Net achieves exceptional experimental performance, thereby establishing its status as a SOTA approach for precise boundary delineation and retinal vessel segmentation.
•An optimized Full Width at Half Maximum (FWHM) algorithm precisely measures longitudinal diameter and provides effective network supervision.•An innovative feature decoder, combining gradient information through EAB and fusing multi-scale information using PFFM, enhances edge perception with increased accuracy.•Multi-query facilitates multi-task learning, encompassing fine segmentation and continuous diameter prediction.•PKSEA-Net demonstrates excellent clinical results and competitive performance against state-of-the-art (SOTA) methods on the new benchmark dataset RCSV.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38461696</pmid><doi>10.1016/j.compbiomed.2024.108255</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2024-04, Vol.172, p.108255, Article 108255 |
issn | 0010-4825 1879-0534 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_2955266185 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Accuracy Algorithms Arterioles Arterioles - diagnostic imaging Automation Biology Blood vessels Cerebrovascular diseases Cross-Sectional Studies Datasets Edge aware Hospitals Humans Image enhancement Image Processing, Computer-Assisted Knowledge Learning Medical imaging Medical screening Morphometry Multi-task learning Patients Photography Prior knowledge supervision Retina Retinal arteriolar morphometry Retinal Vessels - diagnostic imaging Segmentation Supervision Tomography Vascular diseases Vision transformer |
title | PKSEA-Net: A prior knowledge supervised edge-aware multi-task network for retinal arteriolar morphometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PKSEA-Net:%20A%20prior%20knowledge%20supervised%20edge-aware%20multi-task%20network%20for%20retinal%20arteriolar%20morphometry&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Huang,%20Chongjun&rft.date=2024-04&rft.volume=172&rft.spage=108255&rft.pages=108255-&rft.artnum=108255&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2024.108255&rft_dat=%3Cproquest_cross%3E2955266185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973419059&rft_id=info:pmid/38461696&rft_els_id=S0010482524003391&rfr_iscdi=true |