Binary Solvent Induced Stable Interphase Layer for Ultra‐Long Life Sodium Metal Batteries

Sodium foil, promising for high‐energy‐density batteries, faces reversibility challenges due to its inherent reactivity and unstable solid electrolyte interphase (SEI) layer. In this study, a stable sodium metal battery (SMB) is achieved by tuning the electrolyte solvation structure through the addi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-06, Vol.36 (24), p.e2312508-n/a
Hauptverfasser: Vaidyula, Rinish Reddy, Nguyen, Mai H., Weeks, Jason. A., Wang, Yixian, Wang, Ziqing, Kawashima, Kenta, Paul‐Orecchio, Austin G., Celio, Hugo, Dolocan, Andrei, Henkelman, Graeme, Mullins, C. Buddie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page e2312508
container_title Advanced materials (Weinheim)
container_volume 36
creator Vaidyula, Rinish Reddy
Nguyen, Mai H.
Weeks, Jason. A.
Wang, Yixian
Wang, Ziqing
Kawashima, Kenta
Paul‐Orecchio, Austin G.
Celio, Hugo
Dolocan, Andrei
Henkelman, Graeme
Mullins, C. Buddie
description Sodium foil, promising for high‐energy‐density batteries, faces reversibility challenges due to its inherent reactivity and unstable solid electrolyte interphase (SEI) layer. In this study, a stable sodium metal battery (SMB) is achieved by tuning the electrolyte solvation structure through the addition of co‐solvent 2‐methyl tetrahydrofuran (MTHF) to diglyme (Dig). The introduction of cyclic ether‐based MTHF results in increased anion incorporation in the solvation structure, even at lower salt concentrations. Specifically, the anion stabilization capabilities of the environmentally sustainable MTHF co‐solvent lead to a contact‐ion pair‐based solvation structure. Time‐of‐flight mass spectroscopy analysis reveals that a shift toward an anion‐dominated solvation structure promotes the formation of a thin and uniform SEI layer. Consequently, employing a NaPF6‐based electrolyte with a Dig:MTHF ratio of 50% (v/v) binary solvent yields an average Coulombic efficiency of 99.72% for 300 cycles in Cu||Na cell cycling. Remarkably, at a C/2 cycling rate, Na||Na symmetric cell cycling demonstrates ultra‐long‐term stability exceeding 7000 h, and full cells with Na0.44MnO2 as a cathode retain 80% of their capacity after 500 cycles. This study systematically examines solvation structure, SEI layer composition, and electrochemical cycling, emphasizing the significance of MTHF‐based binary solvent mixtures for high‐performance SMBs. In this study, introducing 2‐methyl tetrahydrofuran (MTHF) as a co‐solvent to diglyme (Dig) leads to a more anion‐dominated solvation structure even at low salt concentrations, thereby inducing a thin uniform solid electrolyte interphase (SEI) layer. The thin, robust SEI layer formed can promote long‐term stable electrochemical cycling of sodium metal anode, elucidating the critical role of anion stabilizing co‐solvents for stable sodium metal batteries.
doi_str_mv 10.1002/adma.202312508
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2955265019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067226955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3288-2ba98982dcf6d2d15cbb02fa183b40bbe3df6d9829d63f7461a26a649f3d20e33</originalsourceid><addsrcrecordid>eNqFkD1vFDEQhi1ERC6BlhJZoqHZYzxeO3Z5CQQibUQRUlFY3vUsbLQfh70bdB0_gd_IL8HRhSCloRqN5nlfjR7GXgpYCwB868Pg1wgoBSowT9hKKBRFCVY9ZSuwUhVWl-aQHaV0AwBWg37GDqUptTJoV-zLaTf6uONXU39L48wvxrA0FPjV7Oue8jpT3H7ziXjldxR5O0V-3c_R__75q5rGr7zqWsrp0C0Dv6TZ9_zUzznUUXrODlrfJ3pxP4_Z9fn7z2cfi-rTh4uzTVU0Eo0psPbWWIOhaXXAIFRT14CtF0bWJdQ1yZAPGbBBy_ak1MKj9rq0rQwIJOUxe7Pv3cbp-0JpdkOXGup7P9K0JIdWKdQKhM3o60fozbTEMX_nJOgTRJ3ZTK33VBOnlCK1bhu7IWtyAtyddnen3T1oz4FX97VLPVB4wP96zoDdAz-6nnb_qXObd5ebf-V_AGNvjqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067226955</pqid></control><display><type>article</type><title>Binary Solvent Induced Stable Interphase Layer for Ultra‐Long Life Sodium Metal Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vaidyula, Rinish Reddy ; Nguyen, Mai H. ; Weeks, Jason. A. ; Wang, Yixian ; Wang, Ziqing ; Kawashima, Kenta ; Paul‐Orecchio, Austin G. ; Celio, Hugo ; Dolocan, Andrei ; Henkelman, Graeme ; Mullins, C. Buddie</creator><creatorcontrib>Vaidyula, Rinish Reddy ; Nguyen, Mai H. ; Weeks, Jason. A. ; Wang, Yixian ; Wang, Ziqing ; Kawashima, Kenta ; Paul‐Orecchio, Austin G. ; Celio, Hugo ; Dolocan, Andrei ; Henkelman, Graeme ; Mullins, C. Buddie</creatorcontrib><description>Sodium foil, promising for high‐energy‐density batteries, faces reversibility challenges due to its inherent reactivity and unstable solid electrolyte interphase (SEI) layer. In this study, a stable sodium metal battery (SMB) is achieved by tuning the electrolyte solvation structure through the addition of co‐solvent 2‐methyl tetrahydrofuran (MTHF) to diglyme (Dig). The introduction of cyclic ether‐based MTHF results in increased anion incorporation in the solvation structure, even at lower salt concentrations. Specifically, the anion stabilization capabilities of the environmentally sustainable MTHF co‐solvent lead to a contact‐ion pair‐based solvation structure. Time‐of‐flight mass spectroscopy analysis reveals that a shift toward an anion‐dominated solvation structure promotes the formation of a thin and uniform SEI layer. Consequently, employing a NaPF6‐based electrolyte with a Dig:MTHF ratio of 50% (v/v) binary solvent yields an average Coulombic efficiency of 99.72% for 300 cycles in Cu||Na cell cycling. Remarkably, at a C/2 cycling rate, Na||Na symmetric cell cycling demonstrates ultra‐long‐term stability exceeding 7000 h, and full cells with Na0.44MnO2 as a cathode retain 80% of their capacity after 500 cycles. This study systematically examines solvation structure, SEI layer composition, and electrochemical cycling, emphasizing the significance of MTHF‐based binary solvent mixtures for high‐performance SMBs. In this study, introducing 2‐methyl tetrahydrofuran (MTHF) as a co‐solvent to diglyme (Dig) leads to a more anion‐dominated solvation structure even at low salt concentrations, thereby inducing a thin uniform solid electrolyte interphase (SEI) layer. The thin, robust SEI layer formed can promote long‐term stable electrochemical cycling of sodium metal anode, elucidating the critical role of anion stabilizing co‐solvents for stable sodium metal batteries.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202312508</identifier><identifier>PMID: 38465829</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anions ; Binary mixtures ; Cycles ; electrolyte ; Electrolytes ; Electrolytic cells ; Ion pairs ; long‐term stability ; Sodium ; sodium metal batteries ; Solid electrolytes ; Solvation ; solvation structure ; solvent mixtures ; Solvents ; Tetrahydrofuran</subject><ispartof>Advanced materials (Weinheim), 2024-06, Vol.36 (24), p.e2312508-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3288-2ba98982dcf6d2d15cbb02fa183b40bbe3df6d9829d63f7461a26a649f3d20e33</cites><orcidid>0000-0002-1767-0575 ; 0000-0003-1030-4801 ; 0000-0002-0336-7153 ; 0000-0002-3839-4098 ; 0000-0001-6967-2153 ; 0000-0003-0335-6128 ; 0000-0001-7746-0409 ; 0000-0001-9066-9952 ; 0000-0001-6107-8352 ; 0000-0001-7318-6115 ; 0000-0001-5653-0439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202312508$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202312508$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38465829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vaidyula, Rinish Reddy</creatorcontrib><creatorcontrib>Nguyen, Mai H.</creatorcontrib><creatorcontrib>Weeks, Jason. A.</creatorcontrib><creatorcontrib>Wang, Yixian</creatorcontrib><creatorcontrib>Wang, Ziqing</creatorcontrib><creatorcontrib>Kawashima, Kenta</creatorcontrib><creatorcontrib>Paul‐Orecchio, Austin G.</creatorcontrib><creatorcontrib>Celio, Hugo</creatorcontrib><creatorcontrib>Dolocan, Andrei</creatorcontrib><creatorcontrib>Henkelman, Graeme</creatorcontrib><creatorcontrib>Mullins, C. Buddie</creatorcontrib><title>Binary Solvent Induced Stable Interphase Layer for Ultra‐Long Life Sodium Metal Batteries</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Sodium foil, promising for high‐energy‐density batteries, faces reversibility challenges due to its inherent reactivity and unstable solid electrolyte interphase (SEI) layer. In this study, a stable sodium metal battery (SMB) is achieved by tuning the electrolyte solvation structure through the addition of co‐solvent 2‐methyl tetrahydrofuran (MTHF) to diglyme (Dig). The introduction of cyclic ether‐based MTHF results in increased anion incorporation in the solvation structure, even at lower salt concentrations. Specifically, the anion stabilization capabilities of the environmentally sustainable MTHF co‐solvent lead to a contact‐ion pair‐based solvation structure. Time‐of‐flight mass spectroscopy analysis reveals that a shift toward an anion‐dominated solvation structure promotes the formation of a thin and uniform SEI layer. Consequently, employing a NaPF6‐based electrolyte with a Dig:MTHF ratio of 50% (v/v) binary solvent yields an average Coulombic efficiency of 99.72% for 300 cycles in Cu||Na cell cycling. Remarkably, at a C/2 cycling rate, Na||Na symmetric cell cycling demonstrates ultra‐long‐term stability exceeding 7000 h, and full cells with Na0.44MnO2 as a cathode retain 80% of their capacity after 500 cycles. This study systematically examines solvation structure, SEI layer composition, and electrochemical cycling, emphasizing the significance of MTHF‐based binary solvent mixtures for high‐performance SMBs. In this study, introducing 2‐methyl tetrahydrofuran (MTHF) as a co‐solvent to diglyme (Dig) leads to a more anion‐dominated solvation structure even at low salt concentrations, thereby inducing a thin uniform solid electrolyte interphase (SEI) layer. The thin, robust SEI layer formed can promote long‐term stable electrochemical cycling of sodium metal anode, elucidating the critical role of anion stabilizing co‐solvents for stable sodium metal batteries.</description><subject>Anions</subject><subject>Binary mixtures</subject><subject>Cycles</subject><subject>electrolyte</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Ion pairs</subject><subject>long‐term stability</subject><subject>Sodium</subject><subject>sodium metal batteries</subject><subject>Solid electrolytes</subject><subject>Solvation</subject><subject>solvation structure</subject><subject>solvent mixtures</subject><subject>Solvents</subject><subject>Tetrahydrofuran</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkD1vFDEQhi1ERC6BlhJZoqHZYzxeO3Z5CQQibUQRUlFY3vUsbLQfh70bdB0_gd_IL8HRhSCloRqN5nlfjR7GXgpYCwB868Pg1wgoBSowT9hKKBRFCVY9ZSuwUhVWl-aQHaV0AwBWg37GDqUptTJoV-zLaTf6uONXU39L48wvxrA0FPjV7Oue8jpT3H7ziXjldxR5O0V-3c_R__75q5rGr7zqWsrp0C0Dv6TZ9_zUzznUUXrODlrfJ3pxP4_Z9fn7z2cfi-rTh4uzTVU0Eo0psPbWWIOhaXXAIFRT14CtF0bWJdQ1yZAPGbBBy_ak1MKj9rq0rQwIJOUxe7Pv3cbp-0JpdkOXGup7P9K0JIdWKdQKhM3o60fozbTEMX_nJOgTRJ3ZTK33VBOnlCK1bhu7IWtyAtyddnen3T1oz4FX97VLPVB4wP96zoDdAz-6nnb_qXObd5ebf-V_AGNvjqg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Vaidyula, Rinish Reddy</creator><creator>Nguyen, Mai H.</creator><creator>Weeks, Jason. A.</creator><creator>Wang, Yixian</creator><creator>Wang, Ziqing</creator><creator>Kawashima, Kenta</creator><creator>Paul‐Orecchio, Austin G.</creator><creator>Celio, Hugo</creator><creator>Dolocan, Andrei</creator><creator>Henkelman, Graeme</creator><creator>Mullins, C. Buddie</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1767-0575</orcidid><orcidid>https://orcid.org/0000-0003-1030-4801</orcidid><orcidid>https://orcid.org/0000-0002-0336-7153</orcidid><orcidid>https://orcid.org/0000-0002-3839-4098</orcidid><orcidid>https://orcid.org/0000-0001-6967-2153</orcidid><orcidid>https://orcid.org/0000-0003-0335-6128</orcidid><orcidid>https://orcid.org/0000-0001-7746-0409</orcidid><orcidid>https://orcid.org/0000-0001-9066-9952</orcidid><orcidid>https://orcid.org/0000-0001-6107-8352</orcidid><orcidid>https://orcid.org/0000-0001-7318-6115</orcidid><orcidid>https://orcid.org/0000-0001-5653-0439</orcidid></search><sort><creationdate>20240601</creationdate><title>Binary Solvent Induced Stable Interphase Layer for Ultra‐Long Life Sodium Metal Batteries</title><author>Vaidyula, Rinish Reddy ; Nguyen, Mai H. ; Weeks, Jason. A. ; Wang, Yixian ; Wang, Ziqing ; Kawashima, Kenta ; Paul‐Orecchio, Austin G. ; Celio, Hugo ; Dolocan, Andrei ; Henkelman, Graeme ; Mullins, C. Buddie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3288-2ba98982dcf6d2d15cbb02fa183b40bbe3df6d9829d63f7461a26a649f3d20e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anions</topic><topic>Binary mixtures</topic><topic>Cycles</topic><topic>electrolyte</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Ion pairs</topic><topic>long‐term stability</topic><topic>Sodium</topic><topic>sodium metal batteries</topic><topic>Solid electrolytes</topic><topic>Solvation</topic><topic>solvation structure</topic><topic>solvent mixtures</topic><topic>Solvents</topic><topic>Tetrahydrofuran</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaidyula, Rinish Reddy</creatorcontrib><creatorcontrib>Nguyen, Mai H.</creatorcontrib><creatorcontrib>Weeks, Jason. A.</creatorcontrib><creatorcontrib>Wang, Yixian</creatorcontrib><creatorcontrib>Wang, Ziqing</creatorcontrib><creatorcontrib>Kawashima, Kenta</creatorcontrib><creatorcontrib>Paul‐Orecchio, Austin G.</creatorcontrib><creatorcontrib>Celio, Hugo</creatorcontrib><creatorcontrib>Dolocan, Andrei</creatorcontrib><creatorcontrib>Henkelman, Graeme</creatorcontrib><creatorcontrib>Mullins, C. Buddie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaidyula, Rinish Reddy</au><au>Nguyen, Mai H.</au><au>Weeks, Jason. A.</au><au>Wang, Yixian</au><au>Wang, Ziqing</au><au>Kawashima, Kenta</au><au>Paul‐Orecchio, Austin G.</au><au>Celio, Hugo</au><au>Dolocan, Andrei</au><au>Henkelman, Graeme</au><au>Mullins, C. Buddie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binary Solvent Induced Stable Interphase Layer for Ultra‐Long Life Sodium Metal Batteries</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>36</volume><issue>24</issue><spage>e2312508</spage><epage>n/a</epage><pages>e2312508-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Sodium foil, promising for high‐energy‐density batteries, faces reversibility challenges due to its inherent reactivity and unstable solid electrolyte interphase (SEI) layer. In this study, a stable sodium metal battery (SMB) is achieved by tuning the electrolyte solvation structure through the addition of co‐solvent 2‐methyl tetrahydrofuran (MTHF) to diglyme (Dig). The introduction of cyclic ether‐based MTHF results in increased anion incorporation in the solvation structure, even at lower salt concentrations. Specifically, the anion stabilization capabilities of the environmentally sustainable MTHF co‐solvent lead to a contact‐ion pair‐based solvation structure. Time‐of‐flight mass spectroscopy analysis reveals that a shift toward an anion‐dominated solvation structure promotes the formation of a thin and uniform SEI layer. Consequently, employing a NaPF6‐based electrolyte with a Dig:MTHF ratio of 50% (v/v) binary solvent yields an average Coulombic efficiency of 99.72% for 300 cycles in Cu||Na cell cycling. Remarkably, at a C/2 cycling rate, Na||Na symmetric cell cycling demonstrates ultra‐long‐term stability exceeding 7000 h, and full cells with Na0.44MnO2 as a cathode retain 80% of their capacity after 500 cycles. This study systematically examines solvation structure, SEI layer composition, and electrochemical cycling, emphasizing the significance of MTHF‐based binary solvent mixtures for high‐performance SMBs. In this study, introducing 2‐methyl tetrahydrofuran (MTHF) as a co‐solvent to diglyme (Dig) leads to a more anion‐dominated solvation structure even at low salt concentrations, thereby inducing a thin uniform solid electrolyte interphase (SEI) layer. The thin, robust SEI layer formed can promote long‐term stable electrochemical cycling of sodium metal anode, elucidating the critical role of anion stabilizing co‐solvents for stable sodium metal batteries.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38465829</pmid><doi>10.1002/adma.202312508</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1767-0575</orcidid><orcidid>https://orcid.org/0000-0003-1030-4801</orcidid><orcidid>https://orcid.org/0000-0002-0336-7153</orcidid><orcidid>https://orcid.org/0000-0002-3839-4098</orcidid><orcidid>https://orcid.org/0000-0001-6967-2153</orcidid><orcidid>https://orcid.org/0000-0003-0335-6128</orcidid><orcidid>https://orcid.org/0000-0001-7746-0409</orcidid><orcidid>https://orcid.org/0000-0001-9066-9952</orcidid><orcidid>https://orcid.org/0000-0001-6107-8352</orcidid><orcidid>https://orcid.org/0000-0001-7318-6115</orcidid><orcidid>https://orcid.org/0000-0001-5653-0439</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-06, Vol.36 (24), p.e2312508-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2955265019
source Wiley Online Library Journals Frontfile Complete
subjects Anions
Binary mixtures
Cycles
electrolyte
Electrolytes
Electrolytic cells
Ion pairs
long‐term stability
Sodium
sodium metal batteries
Solid electrolytes
Solvation
solvation structure
solvent mixtures
Solvents
Tetrahydrofuran
title Binary Solvent Induced Stable Interphase Layer for Ultra‐Long Life Sodium Metal Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binary%20Solvent%20Induced%20Stable%20Interphase%20Layer%20for%20Ultra%E2%80%90Long%20Life%20Sodium%20Metal%20Batteries&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Vaidyula,%20Rinish%20Reddy&rft.date=2024-06-01&rft.volume=36&rft.issue=24&rft.spage=e2312508&rft.epage=n/a&rft.pages=e2312508-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202312508&rft_dat=%3Cproquest_cross%3E3067226955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067226955&rft_id=info:pmid/38465829&rfr_iscdi=true