A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations

A Dirichlet boundary value problem for a delay parabolic differential equation is studied on a rectangular domain in the x - t plane. The second-order space derivative is multiplied by a small singular perturbation parameter, which gives rise to parabolic boundary layers on the two lateral sides of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2007-08, Vol.205 (1), p.552-566
Hauptverfasser: Ansari, A.R., Bakr, S.A., Shishkin, G.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 566
container_issue 1
container_start_page 552
container_title Journal of computational and applied mathematics
container_volume 205
creator Ansari, A.R.
Bakr, S.A.
Shishkin, G.I.
description A Dirichlet boundary value problem for a delay parabolic differential equation is studied on a rectangular domain in the x - t plane. The second-order space derivative is multiplied by a small singular perturbation parameter, which gives rise to parabolic boundary layers on the two lateral sides of the rectangle. A numerical method comprising a standard finite difference operator (centred in space, implicit in time) on a rectangular piecewise uniform fitted mesh of N x × N t elements condensing in the boundary layers is proved to be robust with respect to the small parameter, or parameter-uniform, in the sense that its numerical solutions converge in the maximum norm to the exact solution uniformly well for all values of the parameter in the half-open interval ( 0 , 1 ] . More specifically, it is shown that the errors are bounded in the maximum norm by C ( N x - 2 ln 2 N x + N t - 1 ) , where C is a constant independent not only of N x and N t but also of the small parameter. Numerical results are presented, which validate numerically this theoretical result and show that a numerical method consisting of the standard finite difference operator on a uniform mesh of N x × N t elements is not parameter-robust.
doi_str_mv 10.1016/j.cam.2006.05.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29552577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042706003384</els_id><sourcerecordid>29552577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-eab3b46990a0a197326ec3782251b2dc0583e5a84ca213a520a35f0a03c422ce3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAeyyYpfgRxwnYlVVvKRKbGBtTZwJuErj1HaQ-vckLWLJajzyuVeaQ8gtoxmjrLjfZgZ2Gae0yKjMqOBnZMFKVaVMqfKcLKhQKqU5V5fkKoQtncCK5QsSVskAHnYY0afe1WOISWt7GzFpbNuix95gMn1_uSZpnU-C7T_HDnx3SAb0cfQ1NkmDHRyORbXrrJlf0UL3V3FccD9CtK4P1-SihS7gze9cko-nx_f1S7p5e35drzapEbyMKUIt6ryoKgoUWKUEL9AIVXIuWc0bQ2UpUEKZG-BMgOQUhGwnWJicc4NiSe5OvYN3-xFD1DsbDHYd9OjGoHklJZdKTSA7gca7EDy2evB2B_6gGdWzXr3Vk14969VU6knvlHk4ZXC64Nui18HYWVZjPZqoG2f_Sf8A5NSFJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29552577</pqid></control><display><type>article</type><title>A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ansari, A.R. ; Bakr, S.A. ; Shishkin, G.I.</creator><creatorcontrib>Ansari, A.R. ; Bakr, S.A. ; Shishkin, G.I.</creatorcontrib><description>A Dirichlet boundary value problem for a delay parabolic differential equation is studied on a rectangular domain in the x - t plane. The second-order space derivative is multiplied by a small singular perturbation parameter, which gives rise to parabolic boundary layers on the two lateral sides of the rectangle. A numerical method comprising a standard finite difference operator (centred in space, implicit in time) on a rectangular piecewise uniform fitted mesh of N x × N t elements condensing in the boundary layers is proved to be robust with respect to the small parameter, or parameter-uniform, in the sense that its numerical solutions converge in the maximum norm to the exact solution uniformly well for all values of the parameter in the half-open interval ( 0 , 1 ] . More specifically, it is shown that the errors are bounded in the maximum norm by C ( N x - 2 ln 2 N x + N t - 1 ) , where C is a constant independent not only of N x and N t but also of the small parameter. Numerical results are presented, which validate numerically this theoretical result and show that a numerical method consisting of the standard finite difference operator on a uniform mesh of N x × N t elements is not parameter-robust.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2006.05.032</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>[formula omitted]-uniform convergence ; Delay partial differential equations ; Finite difference discretisation ; Parabolic boundary layers ; Shishkin mesh</subject><ispartof>Journal of computational and applied mathematics, 2007-08, Vol.205 (1), p.552-566</ispartof><rights>2006 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-eab3b46990a0a197326ec3782251b2dc0583e5a84ca213a520a35f0a03c422ce3</citedby><cites>FETCH-LOGICAL-c328t-eab3b46990a0a197326ec3782251b2dc0583e5a84ca213a520a35f0a03c422ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2006.05.032$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ansari, A.R.</creatorcontrib><creatorcontrib>Bakr, S.A.</creatorcontrib><creatorcontrib>Shishkin, G.I.</creatorcontrib><title>A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations</title><title>Journal of computational and applied mathematics</title><description>A Dirichlet boundary value problem for a delay parabolic differential equation is studied on a rectangular domain in the x - t plane. The second-order space derivative is multiplied by a small singular perturbation parameter, which gives rise to parabolic boundary layers on the two lateral sides of the rectangle. A numerical method comprising a standard finite difference operator (centred in space, implicit in time) on a rectangular piecewise uniform fitted mesh of N x × N t elements condensing in the boundary layers is proved to be robust with respect to the small parameter, or parameter-uniform, in the sense that its numerical solutions converge in the maximum norm to the exact solution uniformly well for all values of the parameter in the half-open interval ( 0 , 1 ] . More specifically, it is shown that the errors are bounded in the maximum norm by C ( N x - 2 ln 2 N x + N t - 1 ) , where C is a constant independent not only of N x and N t but also of the small parameter. Numerical results are presented, which validate numerically this theoretical result and show that a numerical method consisting of the standard finite difference operator on a uniform mesh of N x × N t elements is not parameter-robust.</description><subject>[formula omitted]-uniform convergence</subject><subject>Delay partial differential equations</subject><subject>Finite difference discretisation</subject><subject>Parabolic boundary layers</subject><subject>Shishkin mesh</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAeyyYpfgRxwnYlVVvKRKbGBtTZwJuErj1HaQ-vckLWLJajzyuVeaQ8gtoxmjrLjfZgZ2Gae0yKjMqOBnZMFKVaVMqfKcLKhQKqU5V5fkKoQtncCK5QsSVskAHnYY0afe1WOISWt7GzFpbNuix95gMn1_uSZpnU-C7T_HDnx3SAb0cfQ1NkmDHRyORbXrrJlf0UL3V3FccD9CtK4P1-SihS7gze9cko-nx_f1S7p5e35drzapEbyMKUIt6ryoKgoUWKUEL9AIVXIuWc0bQ2UpUEKZG-BMgOQUhGwnWJicc4NiSe5OvYN3-xFD1DsbDHYd9OjGoHklJZdKTSA7gca7EDy2evB2B_6gGdWzXr3Vk14969VU6knvlHk4ZXC64Nui18HYWVZjPZqoG2f_Sf8A5NSFJA</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Ansari, A.R.</creator><creator>Bakr, S.A.</creator><creator>Shishkin, G.I.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070801</creationdate><title>A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations</title><author>Ansari, A.R. ; Bakr, S.A. ; Shishkin, G.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-eab3b46990a0a197326ec3782251b2dc0583e5a84ca213a520a35f0a03c422ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>[formula omitted]-uniform convergence</topic><topic>Delay partial differential equations</topic><topic>Finite difference discretisation</topic><topic>Parabolic boundary layers</topic><topic>Shishkin mesh</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ansari, A.R.</creatorcontrib><creatorcontrib>Bakr, S.A.</creatorcontrib><creatorcontrib>Shishkin, G.I.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ansari, A.R.</au><au>Bakr, S.A.</au><au>Shishkin, G.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>205</volume><issue>1</issue><spage>552</spage><epage>566</epage><pages>552-566</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>A Dirichlet boundary value problem for a delay parabolic differential equation is studied on a rectangular domain in the x - t plane. The second-order space derivative is multiplied by a small singular perturbation parameter, which gives rise to parabolic boundary layers on the two lateral sides of the rectangle. A numerical method comprising a standard finite difference operator (centred in space, implicit in time) on a rectangular piecewise uniform fitted mesh of N x × N t elements condensing in the boundary layers is proved to be robust with respect to the small parameter, or parameter-uniform, in the sense that its numerical solutions converge in the maximum norm to the exact solution uniformly well for all values of the parameter in the half-open interval ( 0 , 1 ] . More specifically, it is shown that the errors are bounded in the maximum norm by C ( N x - 2 ln 2 N x + N t - 1 ) , where C is a constant independent not only of N x and N t but also of the small parameter. Numerical results are presented, which validate numerically this theoretical result and show that a numerical method consisting of the standard finite difference operator on a uniform mesh of N x × N t elements is not parameter-robust.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2006.05.032</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2007-08, Vol.205 (1), p.552-566
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_29552577
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects [formula omitted]-uniform convergence
Delay partial differential equations
Finite difference discretisation
Parabolic boundary layers
Shishkin mesh
title A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20parameter-robust%20finite%20difference%20method%20for%20singularly%20perturbed%20delay%20parabolic%20partial%20differential%20equations&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Ansari,%20A.R.&rft.date=2007-08-01&rft.volume=205&rft.issue=1&rft.spage=552&rft.epage=566&rft.pages=552-566&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2006.05.032&rft_dat=%3Cproquest_cross%3E29552577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29552577&rft_id=info:pmid/&rft_els_id=S0377042706003384&rfr_iscdi=true