Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: A comparative study

Cement stabilization is one of the commonly used techniques to improve the strength of soft ground/clays, generally found along coastal and low land areas. The strength development in cement stabilization technique depends on the soil properties, cement content, curing period and environmental condi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and geotechnics 2006-04, Vol.33 (3), p.196-208
Hauptverfasser: Narendra, B.S., Sivapullaiah, P.V., Suresh, S., Omkar, S.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208
container_issue 3
container_start_page 196
container_title Computers and geotechnics
container_volume 33
creator Narendra, B.S.
Sivapullaiah, P.V.
Suresh, S.
Omkar, S.N.
description Cement stabilization is one of the commonly used techniques to improve the strength of soft ground/clays, generally found along coastal and low land areas. The strength development in cement stabilization technique depends on the soil properties, cement content, curing period and environmental conditions. For optimal and effective utilization of cement, there is a need to develop a mathematical model relating the gain in strength in terms of the variables responsible. The existing empirical model in the literature assumes linear variation of normalized strength with the logarithm of curing period and hence, different empirical models are required for different conditions of the same soil. Also, the accuracy of strength prediction is unsatisfactory. Due to unknown functional relationships and nonlinearity in strength development, in this paper the computational intelligence techniques such as multilayer perceptron (MLP), radial basis function (RBF) and genetic programming (GP) are used to develop a mathematical model. To generate the mathematical model, an experimental study is conducted to obtain the strength of three inland soils namely, red earth (CL), brown earth (CH) and black cotton soil (CH) for different water contents, cement contents and curing periods. In order to generate a generic mathematical model using computational intelligence techniques, two saline soils (Ariake clay-3 and Ariake clay-4) and three inland soils are used. A detailed study of the relative performance of the computational intelligence techniques and the empirical model has been carried out.
doi_str_mv 10.1016/j.compgeo.2006.03.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29552076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266352X06000383</els_id><sourcerecordid>29552076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-cc5f21bddf379be73f107049423a2d694a1f04d1037853ef087e2248ad833fe63</originalsourceid><addsrcrecordid>eNqFkE9r3DAUxEVoINu0H6GgS3uz-yTZlt1LCaH_IJAcEshNKNKTo8UrbSU5kEs_e-3dhR57mstvZt4bQj4wqBmw7vO2NnG3HzHWHKCrQdSLnJEN66WoZCfEG7IB3nWVaPnjBXmb8xYW39APG_LnLqH1pvgYaHR0DiYG5wNaumYmzNm_IM0lYRjL84rk6AodU5yDzXTOPowHdC56DdET9aHgNPkRg0Fa0DwH_3vG_IVeHUCdFvCQOdvXd-Tc6Snj-5Nekofv3-6vf1Y3tz9-XV_dVEZIKJUxrePsyVon5PCEUjgGEpqh4UJz2w2NZg4ay0DIvhXooJfIedNr2wvhsBOX5NMxd5_iekxRO5_NcqYOGOes-NC2HOQKtkfQpJhzQqf2ye90elUM1Lq22qrT2mpdW4FQiyy-j6cCnY2eXNLB-PzP3AM00DQL9_XI4fLti8eksvHrUtYnNEXZ6P_T9BeJXJvV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29552076</pqid></control><display><type>article</type><title>Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: A comparative study</title><source>Elsevier ScienceDirect Journals</source><creator>Narendra, B.S. ; Sivapullaiah, P.V. ; Suresh, S. ; Omkar, S.N.</creator><creatorcontrib>Narendra, B.S. ; Sivapullaiah, P.V. ; Suresh, S. ; Omkar, S.N.</creatorcontrib><description>Cement stabilization is one of the commonly used techniques to improve the strength of soft ground/clays, generally found along coastal and low land areas. The strength development in cement stabilization technique depends on the soil properties, cement content, curing period and environmental conditions. For optimal and effective utilization of cement, there is a need to develop a mathematical model relating the gain in strength in terms of the variables responsible. The existing empirical model in the literature assumes linear variation of normalized strength with the logarithm of curing period and hence, different empirical models are required for different conditions of the same soil. Also, the accuracy of strength prediction is unsatisfactory. Due to unknown functional relationships and nonlinearity in strength development, in this paper the computational intelligence techniques such as multilayer perceptron (MLP), radial basis function (RBF) and genetic programming (GP) are used to develop a mathematical model. To generate the mathematical model, an experimental study is conducted to obtain the strength of three inland soils namely, red earth (CL), brown earth (CH) and black cotton soil (CH) for different water contents, cement contents and curing periods. In order to generate a generic mathematical model using computational intelligence techniques, two saline soils (Ariake clay-3 and Ariake clay-4) and three inland soils are used. A detailed study of the relative performance of the computational intelligence techniques and the empirical model has been carried out.</description><identifier>ISSN: 0266-352X</identifier><identifier>EISSN: 1873-7633</identifier><identifier>DOI: 10.1016/j.compgeo.2006.03.006</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Cement stabilization ; Earth sciences ; Earth, ocean, space ; Empirical model ; Engineering and environment geology. Geothermics ; Engineering geology ; Exact sciences and technology ; Genetic programming ; Multilayer perceptron ; Radial basis function ; Saline soil ; Soft ground ; Unconfined compressive strength</subject><ispartof>Computers and geotechnics, 2006-04, Vol.33 (3), p.196-208</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-cc5f21bddf379be73f107049423a2d694a1f04d1037853ef087e2248ad833fe63</citedby><cites>FETCH-LOGICAL-c370t-cc5f21bddf379be73f107049423a2d694a1f04d1037853ef087e2248ad833fe63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0266352X06000383$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18004044$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Narendra, B.S.</creatorcontrib><creatorcontrib>Sivapullaiah, P.V.</creatorcontrib><creatorcontrib>Suresh, S.</creatorcontrib><creatorcontrib>Omkar, S.N.</creatorcontrib><title>Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: A comparative study</title><title>Computers and geotechnics</title><description>Cement stabilization is one of the commonly used techniques to improve the strength of soft ground/clays, generally found along coastal and low land areas. The strength development in cement stabilization technique depends on the soil properties, cement content, curing period and environmental conditions. For optimal and effective utilization of cement, there is a need to develop a mathematical model relating the gain in strength in terms of the variables responsible. The existing empirical model in the literature assumes linear variation of normalized strength with the logarithm of curing period and hence, different empirical models are required for different conditions of the same soil. Also, the accuracy of strength prediction is unsatisfactory. Due to unknown functional relationships and nonlinearity in strength development, in this paper the computational intelligence techniques such as multilayer perceptron (MLP), radial basis function (RBF) and genetic programming (GP) are used to develop a mathematical model. To generate the mathematical model, an experimental study is conducted to obtain the strength of three inland soils namely, red earth (CL), brown earth (CH) and black cotton soil (CH) for different water contents, cement contents and curing periods. In order to generate a generic mathematical model using computational intelligence techniques, two saline soils (Ariake clay-3 and Ariake clay-4) and three inland soils are used. A detailed study of the relative performance of the computational intelligence techniques and the empirical model has been carried out.</description><subject>Cement stabilization</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Empirical model</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Exact sciences and technology</subject><subject>Genetic programming</subject><subject>Multilayer perceptron</subject><subject>Radial basis function</subject><subject>Saline soil</subject><subject>Soft ground</subject><subject>Unconfined compressive strength</subject><issn>0266-352X</issn><issn>1873-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkE9r3DAUxEVoINu0H6GgS3uz-yTZlt1LCaH_IJAcEshNKNKTo8UrbSU5kEs_e-3dhR57mstvZt4bQj4wqBmw7vO2NnG3HzHWHKCrQdSLnJEN66WoZCfEG7IB3nWVaPnjBXmb8xYW39APG_LnLqH1pvgYaHR0DiYG5wNaumYmzNm_IM0lYRjL84rk6AodU5yDzXTOPowHdC56DdET9aHgNPkRg0Fa0DwH_3vG_IVeHUCdFvCQOdvXd-Tc6Snj-5Nekofv3-6vf1Y3tz9-XV_dVEZIKJUxrePsyVon5PCEUjgGEpqh4UJz2w2NZg4ay0DIvhXooJfIedNr2wvhsBOX5NMxd5_iekxRO5_NcqYOGOes-NC2HOQKtkfQpJhzQqf2ye90elUM1Lq22qrT2mpdW4FQiyy-j6cCnY2eXNLB-PzP3AM00DQL9_XI4fLti8eksvHrUtYnNEXZ6P_T9BeJXJvV</recordid><startdate>200604</startdate><enddate>200604</enddate><creator>Narendra, B.S.</creator><creator>Sivapullaiah, P.V.</creator><creator>Suresh, S.</creator><creator>Omkar, S.N.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200604</creationdate><title>Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: A comparative study</title><author>Narendra, B.S. ; Sivapullaiah, P.V. ; Suresh, S. ; Omkar, S.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-cc5f21bddf379be73f107049423a2d694a1f04d1037853ef087e2248ad833fe63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Cement stabilization</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Empirical model</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Exact sciences and technology</topic><topic>Genetic programming</topic><topic>Multilayer perceptron</topic><topic>Radial basis function</topic><topic>Saline soil</topic><topic>Soft ground</topic><topic>Unconfined compressive strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narendra, B.S.</creatorcontrib><creatorcontrib>Sivapullaiah, P.V.</creatorcontrib><creatorcontrib>Suresh, S.</creatorcontrib><creatorcontrib>Omkar, S.N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and geotechnics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narendra, B.S.</au><au>Sivapullaiah, P.V.</au><au>Suresh, S.</au><au>Omkar, S.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: A comparative study</atitle><jtitle>Computers and geotechnics</jtitle><date>2006-04</date><risdate>2006</risdate><volume>33</volume><issue>3</issue><spage>196</spage><epage>208</epage><pages>196-208</pages><issn>0266-352X</issn><eissn>1873-7633</eissn><abstract>Cement stabilization is one of the commonly used techniques to improve the strength of soft ground/clays, generally found along coastal and low land areas. The strength development in cement stabilization technique depends on the soil properties, cement content, curing period and environmental conditions. For optimal and effective utilization of cement, there is a need to develop a mathematical model relating the gain in strength in terms of the variables responsible. The existing empirical model in the literature assumes linear variation of normalized strength with the logarithm of curing period and hence, different empirical models are required for different conditions of the same soil. Also, the accuracy of strength prediction is unsatisfactory. Due to unknown functional relationships and nonlinearity in strength development, in this paper the computational intelligence techniques such as multilayer perceptron (MLP), radial basis function (RBF) and genetic programming (GP) are used to develop a mathematical model. To generate the mathematical model, an experimental study is conducted to obtain the strength of three inland soils namely, red earth (CL), brown earth (CH) and black cotton soil (CH) for different water contents, cement contents and curing periods. In order to generate a generic mathematical model using computational intelligence techniques, two saline soils (Ariake clay-3 and Ariake clay-4) and three inland soils are used. A detailed study of the relative performance of the computational intelligence techniques and the empirical model has been carried out.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compgeo.2006.03.006</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-352X
ispartof Computers and geotechnics, 2006-04, Vol.33 (3), p.196-208
issn 0266-352X
1873-7633
language eng
recordid cdi_proquest_miscellaneous_29552076
source Elsevier ScienceDirect Journals
subjects Cement stabilization
Earth sciences
Earth, ocean, space
Empirical model
Engineering and environment geology. Geothermics
Engineering geology
Exact sciences and technology
Genetic programming
Multilayer perceptron
Radial basis function
Saline soil
Soft ground
Unconfined compressive strength
title Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: A comparative study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20unconfined%20compressive%20strength%20of%20soft%20grounds%20using%20computational%20intelligence%20techniques:%20A%20comparative%20study&rft.jtitle=Computers%20and%20geotechnics&rft.au=Narendra,%20B.S.&rft.date=2006-04&rft.volume=33&rft.issue=3&rft.spage=196&rft.epage=208&rft.pages=196-208&rft.issn=0266-352X&rft.eissn=1873-7633&rft_id=info:doi/10.1016/j.compgeo.2006.03.006&rft_dat=%3Cproquest_cross%3E29552076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29552076&rft_id=info:pmid/&rft_els_id=S0266352X06000383&rfr_iscdi=true