Order statistics from a logistic distribution and applications to survival and reliability analysis
Joint moments involving arbitrary powers of order statistics are the main concern. Consider order statistics u/sub 1/ /spl les/ u/sub 2/ /spl les/ /spl middot//spl middot//spl middot/ /spl les/ u/sub k/ coming from a simple random sample of size n from a real continuous population where u/sub 1/ = x...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on reliability 2003-06, Vol.52 (2), p.200-206 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 206 |
---|---|
container_issue | 2 |
container_start_page | 200 |
container_title | IEEE transactions on reliability |
container_volume | 52 |
creator | Mathai, A.M. |
description | Joint moments involving arbitrary powers of order statistics are the main concern. Consider order statistics u/sub 1/ /spl les/ u/sub 2/ /spl les/ /spl middot//spl middot//spl middot/ /spl les/ u/sub k/ coming from a simple random sample of size n from a real continuous population where u/sub 1/ = x/sub r(1):n/ is order-statistic #r/sub 1/, u/sub 2/ = x/sub r(1)+r(2):n/ is order statistic #(r/sub 1/ + r/sub 2/), et al., and u/sub k/ = x/sub r(1)+/spl middot//spl middot//spl middot/+r(k):n/ is order statistic #(r/sub 1/ +/spl middot//spl middot//spl middot/+ r/sub k/). Product moments are examined of the type E[u/sub 1//sup /spl alpha/(1)/ /spl middot/ u/sub 2//sup /spl alpha/(2)//sub /spl middot/ /spl middot//spl middot//spl middot//spl middot//u/sub k//sup /spl alpha/(k)/] where /spl alpha//sub 1/, ..., /spl alpha//sub k/ are arbitrary quantities that might be complex numbers, and E[/spl middot/] denotes the s-expected value. Some explicit evaluations are considered for a logistic population. Detailed evaluations of all integer moments of u/sub 1/ and recurrence relations, recurring only on the order of the moments, are given. Connections to survival functions in survival analysis, hazard functions in reliability situations, real type-1, type-2 /spl beta/ and Dirichlet distributions are also examined. Arbitrary product moments for the survival functions are evaluated. Very general results are obtained which can be used in many problems in various areas. |
doi_str_mv | 10.1109/TR.2003.813432 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_29549099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1211111</ieee_id><sourcerecordid>2453793661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-6f2b4e5f681153f640ff3377d5b96733b3b2f2bf483cef9806abbaeb683412a43</originalsourceid><addsrcrecordid>eNqFkc1LJDEQxYMoOH5cvewleNBTj6lU0p0cRXZVEAQZzyHpSSSSmZ5NuoX57-12BMGD1uXxqn5Vh3qEnAGbAzB9tXiac8ZwrgAF8j0yAylVBQ2HfTJjDFSlJdeH5KiU19EKodWMtI956TMtve1j6WNbaMjdilqaupePBl2OkqMb-titqV0vqd1sUmzt5AvtO1qG_BbfbPoYZp-idTHFfjt6m7YllhNyEGwq_vRTj8nzv7-Lm7vq4fH2_ub6oWqxUX1VB-6El6FWABJDLVgIiE2zlE7XDaJDx0ckCIWtD1qx2jpnvasVCuBW4DG53N3d5O7_4EtvVrG0PiW79t1QjGZQN0zXOJIXP5JcS6GZ1r-DSiJonMDzb-BrN-TxAcUopRUHKWCE5juozV0p2QezyXFl89YAM1OGZvFkpgzNLsNx4c9uIXrvv2AOU-E7uduYQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889821541</pqid></control><display><type>article</type><title>Order statistics from a logistic distribution and applications to survival and reliability analysis</title><source>IEEE Xplore</source><creator>Mathai, A.M.</creator><creatorcontrib>Mathai, A.M.</creatorcontrib><description>Joint moments involving arbitrary powers of order statistics are the main concern. Consider order statistics u/sub 1/ /spl les/ u/sub 2/ /spl les/ /spl middot//spl middot//spl middot/ /spl les/ u/sub k/ coming from a simple random sample of size n from a real continuous population where u/sub 1/ = x/sub r(1):n/ is order-statistic #r/sub 1/, u/sub 2/ = x/sub r(1)+r(2):n/ is order statistic #(r/sub 1/ + r/sub 2/), et al., and u/sub k/ = x/sub r(1)+/spl middot//spl middot//spl middot/+r(k):n/ is order statistic #(r/sub 1/ +/spl middot//spl middot//spl middot/+ r/sub k/). Product moments are examined of the type E[u/sub 1//sup /spl alpha/(1)/ /spl middot/ u/sub 2//sup /spl alpha/(2)//sub /spl middot/ /spl middot//spl middot//spl middot//spl middot//u/sub k//sup /spl alpha/(k)/] where /spl alpha//sub 1/, ..., /spl alpha//sub k/ are arbitrary quantities that might be complex numbers, and E[/spl middot/] denotes the s-expected value. Some explicit evaluations are considered for a logistic population. Detailed evaluations of all integer moments of u/sub 1/ and recurrence relations, recurring only on the order of the moments, are given. Connections to survival functions in survival analysis, hazard functions in reliability situations, real type-1, type-2 /spl beta/ and Dirichlet distributions are also examined. Arbitrary product moments for the survival functions are evaluated. Very general results are obtained which can be used in many problems in various areas.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2003.813432</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Dirichlet problem ; Distribution functions ; Hazards ; Higher order statistics ; Joints ; Logistics ; Probability density function ; Random variables ; Reliability ; Reliability analysis ; Samples ; Statistical analysis ; Statistical distributions ; Statistics ; Survival</subject><ispartof>IEEE transactions on reliability, 2003-06, Vol.52 (2), p.200-206</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-6f2b4e5f681153f640ff3377d5b96733b3b2f2bf483cef9806abbaeb683412a43</citedby><cites>FETCH-LOGICAL-c378t-6f2b4e5f681153f640ff3377d5b96733b3b2f2bf483cef9806abbaeb683412a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1211111$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1211111$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mathai, A.M.</creatorcontrib><title>Order statistics from a logistic distribution and applications to survival and reliability analysis</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>Joint moments involving arbitrary powers of order statistics are the main concern. Consider order statistics u/sub 1/ /spl les/ u/sub 2/ /spl les/ /spl middot//spl middot//spl middot/ /spl les/ u/sub k/ coming from a simple random sample of size n from a real continuous population where u/sub 1/ = x/sub r(1):n/ is order-statistic #r/sub 1/, u/sub 2/ = x/sub r(1)+r(2):n/ is order statistic #(r/sub 1/ + r/sub 2/), et al., and u/sub k/ = x/sub r(1)+/spl middot//spl middot//spl middot/+r(k):n/ is order statistic #(r/sub 1/ +/spl middot//spl middot//spl middot/+ r/sub k/). Product moments are examined of the type E[u/sub 1//sup /spl alpha/(1)/ /spl middot/ u/sub 2//sup /spl alpha/(2)//sub /spl middot/ /spl middot//spl middot//spl middot//spl middot//u/sub k//sup /spl alpha/(k)/] where /spl alpha//sub 1/, ..., /spl alpha//sub k/ are arbitrary quantities that might be complex numbers, and E[/spl middot/] denotes the s-expected value. Some explicit evaluations are considered for a logistic population. Detailed evaluations of all integer moments of u/sub 1/ and recurrence relations, recurring only on the order of the moments, are given. Connections to survival functions in survival analysis, hazard functions in reliability situations, real type-1, type-2 /spl beta/ and Dirichlet distributions are also examined. Arbitrary product moments for the survival functions are evaluated. Very general results are obtained which can be used in many problems in various areas.</description><subject>Dirichlet problem</subject><subject>Distribution functions</subject><subject>Hazards</subject><subject>Higher order statistics</subject><subject>Joints</subject><subject>Logistics</subject><subject>Probability density function</subject><subject>Random variables</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Samples</subject><subject>Statistical analysis</subject><subject>Statistical distributions</subject><subject>Statistics</subject><subject>Survival</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkc1LJDEQxYMoOH5cvewleNBTj6lU0p0cRXZVEAQZzyHpSSSSmZ5NuoX57-12BMGD1uXxqn5Vh3qEnAGbAzB9tXiac8ZwrgAF8j0yAylVBQ2HfTJjDFSlJdeH5KiU19EKodWMtI956TMtve1j6WNbaMjdilqaupePBl2OkqMb-titqV0vqd1sUmzt5AvtO1qG_BbfbPoYZp-idTHFfjt6m7YllhNyEGwq_vRTj8nzv7-Lm7vq4fH2_ub6oWqxUX1VB-6El6FWABJDLVgIiE2zlE7XDaJDx0ckCIWtD1qx2jpnvasVCuBW4DG53N3d5O7_4EtvVrG0PiW79t1QjGZQN0zXOJIXP5JcS6GZ1r-DSiJonMDzb-BrN-TxAcUopRUHKWCE5juozV0p2QezyXFl89YAM1OGZvFkpgzNLsNx4c9uIXrvv2AOU-E7uduYQA</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Mathai, A.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope><scope>F28</scope></search><sort><creationdate>20030601</creationdate><title>Order statistics from a logistic distribution and applications to survival and reliability analysis</title><author>Mathai, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-6f2b4e5f681153f640ff3377d5b96733b3b2f2bf483cef9806abbaeb683412a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Dirichlet problem</topic><topic>Distribution functions</topic><topic>Hazards</topic><topic>Higher order statistics</topic><topic>Joints</topic><topic>Logistics</topic><topic>Probability density function</topic><topic>Random variables</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Samples</topic><topic>Statistical analysis</topic><topic>Statistical distributions</topic><topic>Statistics</topic><topic>Survival</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mathai, A.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mathai, A.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Order statistics from a logistic distribution and applications to survival and reliability analysis</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2003-06-01</date><risdate>2003</risdate><volume>52</volume><issue>2</issue><spage>200</spage><epage>206</epage><pages>200-206</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>Joint moments involving arbitrary powers of order statistics are the main concern. Consider order statistics u/sub 1/ /spl les/ u/sub 2/ /spl les/ /spl middot//spl middot//spl middot/ /spl les/ u/sub k/ coming from a simple random sample of size n from a real continuous population where u/sub 1/ = x/sub r(1):n/ is order-statistic #r/sub 1/, u/sub 2/ = x/sub r(1)+r(2):n/ is order statistic #(r/sub 1/ + r/sub 2/), et al., and u/sub k/ = x/sub r(1)+/spl middot//spl middot//spl middot/+r(k):n/ is order statistic #(r/sub 1/ +/spl middot//spl middot//spl middot/+ r/sub k/). Product moments are examined of the type E[u/sub 1//sup /spl alpha/(1)/ /spl middot/ u/sub 2//sup /spl alpha/(2)//sub /spl middot/ /spl middot//spl middot//spl middot//spl middot//u/sub k//sup /spl alpha/(k)/] where /spl alpha//sub 1/, ..., /spl alpha//sub k/ are arbitrary quantities that might be complex numbers, and E[/spl middot/] denotes the s-expected value. Some explicit evaluations are considered for a logistic population. Detailed evaluations of all integer moments of u/sub 1/ and recurrence relations, recurring only on the order of the moments, are given. Connections to survival functions in survival analysis, hazard functions in reliability situations, real type-1, type-2 /spl beta/ and Dirichlet distributions are also examined. Arbitrary product moments for the survival functions are evaluated. Very general results are obtained which can be used in many problems in various areas.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2003.813432</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9529 |
ispartof | IEEE transactions on reliability, 2003-06, Vol.52 (2), p.200-206 |
issn | 0018-9529 1558-1721 |
language | eng |
recordid | cdi_proquest_miscellaneous_29549099 |
source | IEEE Xplore |
subjects | Dirichlet problem Distribution functions Hazards Higher order statistics Joints Logistics Probability density function Random variables Reliability Reliability analysis Samples Statistical analysis Statistical distributions Statistics Survival |
title | Order statistics from a logistic distribution and applications to survival and reliability analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Order%20statistics%20from%20a%20logistic%20distribution%20and%20applications%20to%20survival%20and%20reliability%20analysis&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Mathai,%20A.M.&rft.date=2003-06-01&rft.volume=52&rft.issue=2&rft.spage=200&rft.epage=206&rft.pages=200-206&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2003.813432&rft_dat=%3Cproquest_RIE%3E2453793661%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889821541&rft_id=info:pmid/&rft_ieee_id=1211111&rfr_iscdi=true |