Order statistics from a logistic distribution and applications to survival and reliability analysis

Joint moments involving arbitrary powers of order statistics are the main concern. Consider order statistics u/sub 1/ /spl les/ u/sub 2/ /spl les/ /spl middot//spl middot//spl middot/ /spl les/ u/sub k/ coming from a simple random sample of size n from a real continuous population where u/sub 1/ = x...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on reliability 2003-06, Vol.52 (2), p.200-206
1. Verfasser: Mathai, A.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 206
container_issue 2
container_start_page 200
container_title IEEE transactions on reliability
container_volume 52
creator Mathai, A.M.
description Joint moments involving arbitrary powers of order statistics are the main concern. Consider order statistics u/sub 1/ /spl les/ u/sub 2/ /spl les/ /spl middot//spl middot//spl middot/ /spl les/ u/sub k/ coming from a simple random sample of size n from a real continuous population where u/sub 1/ = x/sub r(1):n/ is order-statistic #r/sub 1/, u/sub 2/ = x/sub r(1)+r(2):n/ is order statistic #(r/sub 1/ + r/sub 2/), et al., and u/sub k/ = x/sub r(1)+/spl middot//spl middot//spl middot/+r(k):n/ is order statistic #(r/sub 1/ +/spl middot//spl middot//spl middot/+ r/sub k/). Product moments are examined of the type E[u/sub 1//sup /spl alpha/(1)/ /spl middot/ u/sub 2//sup /spl alpha/(2)//sub /spl middot/ /spl middot//spl middot//spl middot//spl middot//u/sub k//sup /spl alpha/(k)/] where /spl alpha//sub 1/, ..., /spl alpha//sub k/ are arbitrary quantities that might be complex numbers, and E[/spl middot/] denotes the s-expected value. Some explicit evaluations are considered for a logistic population. Detailed evaluations of all integer moments of u/sub 1/ and recurrence relations, recurring only on the order of the moments, are given. Connections to survival functions in survival analysis, hazard functions in reliability situations, real type-1, type-2 /spl beta/ and Dirichlet distributions are also examined. Arbitrary product moments for the survival functions are evaluated. Very general results are obtained which can be used in many problems in various areas.
doi_str_mv 10.1109/TR.2003.813432
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_29549099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1211111</ieee_id><sourcerecordid>2453793661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-6f2b4e5f681153f640ff3377d5b96733b3b2f2bf483cef9806abbaeb683412a43</originalsourceid><addsrcrecordid>eNqFkc1LJDEQxYMoOH5cvewleNBTj6lU0p0cRXZVEAQZzyHpSSSSmZ5NuoX57-12BMGD1uXxqn5Vh3qEnAGbAzB9tXiac8ZwrgAF8j0yAylVBQ2HfTJjDFSlJdeH5KiU19EKodWMtI956TMtve1j6WNbaMjdilqaupePBl2OkqMb-titqV0vqd1sUmzt5AvtO1qG_BbfbPoYZp-idTHFfjt6m7YllhNyEGwq_vRTj8nzv7-Lm7vq4fH2_ub6oWqxUX1VB-6El6FWABJDLVgIiE2zlE7XDaJDx0ckCIWtD1qx2jpnvasVCuBW4DG53N3d5O7_4EtvVrG0PiW79t1QjGZQN0zXOJIXP5JcS6GZ1r-DSiJonMDzb-BrN-TxAcUopRUHKWCE5juozV0p2QezyXFl89YAM1OGZvFkpgzNLsNx4c9uIXrvv2AOU-E7uduYQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889821541</pqid></control><display><type>article</type><title>Order statistics from a logistic distribution and applications to survival and reliability analysis</title><source>IEEE Xplore</source><creator>Mathai, A.M.</creator><creatorcontrib>Mathai, A.M.</creatorcontrib><description>Joint moments involving arbitrary powers of order statistics are the main concern. Consider order statistics u/sub 1/ /spl les/ u/sub 2/ /spl les/ /spl middot//spl middot//spl middot/ /spl les/ u/sub k/ coming from a simple random sample of size n from a real continuous population where u/sub 1/ = x/sub r(1):n/ is order-statistic #r/sub 1/, u/sub 2/ = x/sub r(1)+r(2):n/ is order statistic #(r/sub 1/ + r/sub 2/), et al., and u/sub k/ = x/sub r(1)+/spl middot//spl middot//spl middot/+r(k):n/ is order statistic #(r/sub 1/ +/spl middot//spl middot//spl middot/+ r/sub k/). Product moments are examined of the type E[u/sub 1//sup /spl alpha/(1)/ /spl middot/ u/sub 2//sup /spl alpha/(2)//sub /spl middot/ /spl middot//spl middot//spl middot//spl middot//u/sub k//sup /spl alpha/(k)/] where /spl alpha//sub 1/, ..., /spl alpha//sub k/ are arbitrary quantities that might be complex numbers, and E[/spl middot/] denotes the s-expected value. Some explicit evaluations are considered for a logistic population. Detailed evaluations of all integer moments of u/sub 1/ and recurrence relations, recurring only on the order of the moments, are given. Connections to survival functions in survival analysis, hazard functions in reliability situations, real type-1, type-2 /spl beta/ and Dirichlet distributions are also examined. Arbitrary product moments for the survival functions are evaluated. Very general results are obtained which can be used in many problems in various areas.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2003.813432</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Dirichlet problem ; Distribution functions ; Hazards ; Higher order statistics ; Joints ; Logistics ; Probability density function ; Random variables ; Reliability ; Reliability analysis ; Samples ; Statistical analysis ; Statistical distributions ; Statistics ; Survival</subject><ispartof>IEEE transactions on reliability, 2003-06, Vol.52 (2), p.200-206</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-6f2b4e5f681153f640ff3377d5b96733b3b2f2bf483cef9806abbaeb683412a43</citedby><cites>FETCH-LOGICAL-c378t-6f2b4e5f681153f640ff3377d5b96733b3b2f2bf483cef9806abbaeb683412a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1211111$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1211111$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mathai, A.M.</creatorcontrib><title>Order statistics from a logistic distribution and applications to survival and reliability analysis</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>Joint moments involving arbitrary powers of order statistics are the main concern. Consider order statistics u/sub 1/ /spl les/ u/sub 2/ /spl les/ /spl middot//spl middot//spl middot/ /spl les/ u/sub k/ coming from a simple random sample of size n from a real continuous population where u/sub 1/ = x/sub r(1):n/ is order-statistic #r/sub 1/, u/sub 2/ = x/sub r(1)+r(2):n/ is order statistic #(r/sub 1/ + r/sub 2/), et al., and u/sub k/ = x/sub r(1)+/spl middot//spl middot//spl middot/+r(k):n/ is order statistic #(r/sub 1/ +/spl middot//spl middot//spl middot/+ r/sub k/). Product moments are examined of the type E[u/sub 1//sup /spl alpha/(1)/ /spl middot/ u/sub 2//sup /spl alpha/(2)//sub /spl middot/ /spl middot//spl middot//spl middot//spl middot//u/sub k//sup /spl alpha/(k)/] where /spl alpha//sub 1/, ..., /spl alpha//sub k/ are arbitrary quantities that might be complex numbers, and E[/spl middot/] denotes the s-expected value. Some explicit evaluations are considered for a logistic population. Detailed evaluations of all integer moments of u/sub 1/ and recurrence relations, recurring only on the order of the moments, are given. Connections to survival functions in survival analysis, hazard functions in reliability situations, real type-1, type-2 /spl beta/ and Dirichlet distributions are also examined. Arbitrary product moments for the survival functions are evaluated. Very general results are obtained which can be used in many problems in various areas.</description><subject>Dirichlet problem</subject><subject>Distribution functions</subject><subject>Hazards</subject><subject>Higher order statistics</subject><subject>Joints</subject><subject>Logistics</subject><subject>Probability density function</subject><subject>Random variables</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Samples</subject><subject>Statistical analysis</subject><subject>Statistical distributions</subject><subject>Statistics</subject><subject>Survival</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkc1LJDEQxYMoOH5cvewleNBTj6lU0p0cRXZVEAQZzyHpSSSSmZ5NuoX57-12BMGD1uXxqn5Vh3qEnAGbAzB9tXiac8ZwrgAF8j0yAylVBQ2HfTJjDFSlJdeH5KiU19EKodWMtI956TMtve1j6WNbaMjdilqaupePBl2OkqMb-titqV0vqd1sUmzt5AvtO1qG_BbfbPoYZp-idTHFfjt6m7YllhNyEGwq_vRTj8nzv7-Lm7vq4fH2_ub6oWqxUX1VB-6El6FWABJDLVgIiE2zlE7XDaJDx0ckCIWtD1qx2jpnvasVCuBW4DG53N3d5O7_4EtvVrG0PiW79t1QjGZQN0zXOJIXP5JcS6GZ1r-DSiJonMDzb-BrN-TxAcUopRUHKWCE5juozV0p2QezyXFl89YAM1OGZvFkpgzNLsNx4c9uIXrvv2AOU-E7uduYQA</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Mathai, A.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope><scope>F28</scope></search><sort><creationdate>20030601</creationdate><title>Order statistics from a logistic distribution and applications to survival and reliability analysis</title><author>Mathai, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-6f2b4e5f681153f640ff3377d5b96733b3b2f2bf483cef9806abbaeb683412a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Dirichlet problem</topic><topic>Distribution functions</topic><topic>Hazards</topic><topic>Higher order statistics</topic><topic>Joints</topic><topic>Logistics</topic><topic>Probability density function</topic><topic>Random variables</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Samples</topic><topic>Statistical analysis</topic><topic>Statistical distributions</topic><topic>Statistics</topic><topic>Survival</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mathai, A.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mathai, A.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Order statistics from a logistic distribution and applications to survival and reliability analysis</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2003-06-01</date><risdate>2003</risdate><volume>52</volume><issue>2</issue><spage>200</spage><epage>206</epage><pages>200-206</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>Joint moments involving arbitrary powers of order statistics are the main concern. Consider order statistics u/sub 1/ /spl les/ u/sub 2/ /spl les/ /spl middot//spl middot//spl middot/ /spl les/ u/sub k/ coming from a simple random sample of size n from a real continuous population where u/sub 1/ = x/sub r(1):n/ is order-statistic #r/sub 1/, u/sub 2/ = x/sub r(1)+r(2):n/ is order statistic #(r/sub 1/ + r/sub 2/), et al., and u/sub k/ = x/sub r(1)+/spl middot//spl middot//spl middot/+r(k):n/ is order statistic #(r/sub 1/ +/spl middot//spl middot//spl middot/+ r/sub k/). Product moments are examined of the type E[u/sub 1//sup /spl alpha/(1)/ /spl middot/ u/sub 2//sup /spl alpha/(2)//sub /spl middot/ /spl middot//spl middot//spl middot//spl middot//u/sub k//sup /spl alpha/(k)/] where /spl alpha//sub 1/, ..., /spl alpha//sub k/ are arbitrary quantities that might be complex numbers, and E[/spl middot/] denotes the s-expected value. Some explicit evaluations are considered for a logistic population. Detailed evaluations of all integer moments of u/sub 1/ and recurrence relations, recurring only on the order of the moments, are given. Connections to survival functions in survival analysis, hazard functions in reliability situations, real type-1, type-2 /spl beta/ and Dirichlet distributions are also examined. Arbitrary product moments for the survival functions are evaluated. Very general results are obtained which can be used in many problems in various areas.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2003.813432</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9529
ispartof IEEE transactions on reliability, 2003-06, Vol.52 (2), p.200-206
issn 0018-9529
1558-1721
language eng
recordid cdi_proquest_miscellaneous_29549099
source IEEE Xplore
subjects Dirichlet problem
Distribution functions
Hazards
Higher order statistics
Joints
Logistics
Probability density function
Random variables
Reliability
Reliability analysis
Samples
Statistical analysis
Statistical distributions
Statistics
Survival
title Order statistics from a logistic distribution and applications to survival and reliability analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Order%20statistics%20from%20a%20logistic%20distribution%20and%20applications%20to%20survival%20and%20reliability%20analysis&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Mathai,%20A.M.&rft.date=2003-06-01&rft.volume=52&rft.issue=2&rft.spage=200&rft.epage=206&rft.pages=200-206&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2003.813432&rft_dat=%3Cproquest_RIE%3E2453793661%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889821541&rft_id=info:pmid/&rft_ieee_id=1211111&rfr_iscdi=true