A bagging approach for improved predictive accuracy of intradialytic hypotension during hemodialysis treatment
The primary objective of this study is to enhance the prediction accuracy of intradialytic hypotension in patients undergoing hemodialysis. A significant challenge in this context arises from the nature of the data derived from the monitoring devices and exhibits an extreme class imbalance problem....
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2024-04, Vol.172, p.108244, Article 108244 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 108244 |
container_title | Computers in biology and medicine |
container_volume | 172 |
creator | Liu, Chien-Liang Lee, Min-Hsuan Hsueh, Shan-Ni Chung, Chia-Chen Lin, Chun-Ju Chang, Po-Han Luo, An-Chun Weng, Hsuan-Chi Lee, Yu-Hsien Dai, Ming-Ji Tsai, Min-Juei |
description | The primary objective of this study is to enhance the prediction accuracy of intradialytic hypotension in patients undergoing hemodialysis. A significant challenge in this context arises from the nature of the data derived from the monitoring devices and exhibits an extreme class imbalance problem. Traditional predictive models often display a bias towards the majority class, compromising the accuracy of minority class predictions. Therefore, we introduce a method called UnderXGBoost. This novel methodology combines the under-sampling, bagging, and XGBoost techniques to balance the dataset and improve predictive accuracy for the minority class. This method is characterized by its straightforward implementation and training efficiency. Empirical validation in a real-world dataset confirms the superior performance of UnderXGBoost compared to existing models in predicting intradialytic hypotension. Furthermore, our approach demonstrates versatility, allowing XGBoost to be substituted with other classifiers and still producing promising results. Sensitivity analysis was performed to assess the model’s robustness, reinforce its reliability, and indicate its applicability to a broader range of medical scenarios facing similar challenges of data imbalance. Our model aims to enable medical professionals to provide preemptive treatments more effectively, thereby improving patient care and prognosis. This study contributes a novel and effective solution to a critical issue in medical prediction, thus broadening the application spectrum of predictive modeling in the healthcare domain.
[Display omitted]
•Enhanced prediction of intradialytic hypotension improves pre-emptive treatment in hemodialysis.•UnderXGBoost method addresses extreme dataset imbalance in medical prediction models.•Validation shows that UnderXGBoost outperforms alternatives in predicting hypotension events.•Sensitivity analysis confirms the robustness of UnderXGBoost for clinical applications.•The proposed method offers a new solution to various medical problems with imbalanced data. |
doi_str_mv | 10.1016/j.compbiomed.2024.108244 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2954778472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482524003287</els_id><sourcerecordid>2973418981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-4145e0b14289c6f1c05b84a06fc05f9990f7f64b4616fa4539f20e8bd58b663c3</originalsourceid><addsrcrecordid>eNqFkUuPFCEQgInRuOPqXzAkXrz0WNB0NxzXja9kEy96JjRdzDCZhhboSebfyzi7MfHiiUd9VQX1EUIZbBmw_sNha-O8jD7OOG05cFGvJRfiGdkwOagGulY8JxsABo2QvLshr3I-AICAFl6Sm1aKblAt25BwR0ez2_mwo2ZZUjR2T11M1M_1cMKJLgknb4s_ITXWrsnYM42O-lCSmbw5nou3dH9eYsGQfQx0WtOl2h7n-CeefaYloSkzhvKavHDmmPHN43pLfn7-9OP-a_Pw_cu3-7uHxgrgpRFMdAgjE1wq2ztmoRulMNC7unNKKXCD68UoetY7I7pWOQ4ox6mTY9-3tr0l76916y9-rZiLnn22eDyagHHNmqtODIMUA6_ou3_QQ1xTqK-r1NAKJpVklZJXyqaYc0Knl-Rnk86agb440Qf914m-ONFXJzX17WODdbzEnhKfJFTg4xXAOpGTx6Sz9RhsHXxCW_QU_f-7_AbXA6Oo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973418981</pqid></control><display><type>article</type><title>A bagging approach for improved predictive accuracy of intradialytic hypotension during hemodialysis treatment</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Liu, Chien-Liang ; Lee, Min-Hsuan ; Hsueh, Shan-Ni ; Chung, Chia-Chen ; Lin, Chun-Ju ; Chang, Po-Han ; Luo, An-Chun ; Weng, Hsuan-Chi ; Lee, Yu-Hsien ; Dai, Ming-Ji ; Tsai, Min-Juei</creator><creatorcontrib>Liu, Chien-Liang ; Lee, Min-Hsuan ; Hsueh, Shan-Ni ; Chung, Chia-Chen ; Lin, Chun-Ju ; Chang, Po-Han ; Luo, An-Chun ; Weng, Hsuan-Chi ; Lee, Yu-Hsien ; Dai, Ming-Ji ; Tsai, Min-Juei</creatorcontrib><description>The primary objective of this study is to enhance the prediction accuracy of intradialytic hypotension in patients undergoing hemodialysis. A significant challenge in this context arises from the nature of the data derived from the monitoring devices and exhibits an extreme class imbalance problem. Traditional predictive models often display a bias towards the majority class, compromising the accuracy of minority class predictions. Therefore, we introduce a method called UnderXGBoost. This novel methodology combines the under-sampling, bagging, and XGBoost techniques to balance the dataset and improve predictive accuracy for the minority class. This method is characterized by its straightforward implementation and training efficiency. Empirical validation in a real-world dataset confirms the superior performance of UnderXGBoost compared to existing models in predicting intradialytic hypotension. Furthermore, our approach demonstrates versatility, allowing XGBoost to be substituted with other classifiers and still producing promising results. Sensitivity analysis was performed to assess the model’s robustness, reinforce its reliability, and indicate its applicability to a broader range of medical scenarios facing similar challenges of data imbalance. Our model aims to enable medical professionals to provide preemptive treatments more effectively, thereby improving patient care and prognosis. This study contributes a novel and effective solution to a critical issue in medical prediction, thus broadening the application spectrum of predictive modeling in the healthcare domain.
[Display omitted]
•Enhanced prediction of intradialytic hypotension improves pre-emptive treatment in hemodialysis.•UnderXGBoost method addresses extreme dataset imbalance in medical prediction models.•Validation shows that UnderXGBoost outperforms alternatives in predicting hypotension events.•Sensitivity analysis confirms the robustness of UnderXGBoost for clinical applications.•The proposed method offers a new solution to various medical problems with imbalanced data.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2024.108244</identifier><identifier>PMID: 38457931</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Accuracy ; Bagging ; Class imbalance ; Datasets ; Empirical analysis ; Ensemble learning ; Hemodialysis ; Humans ; Hypotension ; Hypotension - etiology ; Intradialytic hypotension ; Medical personnel ; Patients ; Prediction models ; Predictions ; Preempting ; Renal Dialysis - adverse effects ; Renal Dialysis - methods ; Reproducibility of Results ; Sensitivity analysis ; UnderXGBoost</subject><ispartof>Computers in biology and medicine, 2024-04, Vol.172, p.108244, Article 108244</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><rights>2024. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-4145e0b14289c6f1c05b84a06fc05f9990f7f64b4616fa4539f20e8bd58b663c3</citedby><cites>FETCH-LOGICAL-c402t-4145e0b14289c6f1c05b84a06fc05f9990f7f64b4616fa4539f20e8bd58b663c3</cites><orcidid>0000-0002-2724-7199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482524003287$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38457931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Chien-Liang</creatorcontrib><creatorcontrib>Lee, Min-Hsuan</creatorcontrib><creatorcontrib>Hsueh, Shan-Ni</creatorcontrib><creatorcontrib>Chung, Chia-Chen</creatorcontrib><creatorcontrib>Lin, Chun-Ju</creatorcontrib><creatorcontrib>Chang, Po-Han</creatorcontrib><creatorcontrib>Luo, An-Chun</creatorcontrib><creatorcontrib>Weng, Hsuan-Chi</creatorcontrib><creatorcontrib>Lee, Yu-Hsien</creatorcontrib><creatorcontrib>Dai, Ming-Ji</creatorcontrib><creatorcontrib>Tsai, Min-Juei</creatorcontrib><title>A bagging approach for improved predictive accuracy of intradialytic hypotension during hemodialysis treatment</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>The primary objective of this study is to enhance the prediction accuracy of intradialytic hypotension in patients undergoing hemodialysis. A significant challenge in this context arises from the nature of the data derived from the monitoring devices and exhibits an extreme class imbalance problem. Traditional predictive models often display a bias towards the majority class, compromising the accuracy of minority class predictions. Therefore, we introduce a method called UnderXGBoost. This novel methodology combines the under-sampling, bagging, and XGBoost techniques to balance the dataset and improve predictive accuracy for the minority class. This method is characterized by its straightforward implementation and training efficiency. Empirical validation in a real-world dataset confirms the superior performance of UnderXGBoost compared to existing models in predicting intradialytic hypotension. Furthermore, our approach demonstrates versatility, allowing XGBoost to be substituted with other classifiers and still producing promising results. Sensitivity analysis was performed to assess the model’s robustness, reinforce its reliability, and indicate its applicability to a broader range of medical scenarios facing similar challenges of data imbalance. Our model aims to enable medical professionals to provide preemptive treatments more effectively, thereby improving patient care and prognosis. This study contributes a novel and effective solution to a critical issue in medical prediction, thus broadening the application spectrum of predictive modeling in the healthcare domain.
[Display omitted]
•Enhanced prediction of intradialytic hypotension improves pre-emptive treatment in hemodialysis.•UnderXGBoost method addresses extreme dataset imbalance in medical prediction models.•Validation shows that UnderXGBoost outperforms alternatives in predicting hypotension events.•Sensitivity analysis confirms the robustness of UnderXGBoost for clinical applications.•The proposed method offers a new solution to various medical problems with imbalanced data.</description><subject>Accuracy</subject><subject>Bagging</subject><subject>Class imbalance</subject><subject>Datasets</subject><subject>Empirical analysis</subject><subject>Ensemble learning</subject><subject>Hemodialysis</subject><subject>Humans</subject><subject>Hypotension</subject><subject>Hypotension - etiology</subject><subject>Intradialytic hypotension</subject><subject>Medical personnel</subject><subject>Patients</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Preempting</subject><subject>Renal Dialysis - adverse effects</subject><subject>Renal Dialysis - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity analysis</subject><subject>UnderXGBoost</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUuPFCEQgInRuOPqXzAkXrz0WNB0NxzXja9kEy96JjRdzDCZhhboSebfyzi7MfHiiUd9VQX1EUIZbBmw_sNha-O8jD7OOG05cFGvJRfiGdkwOagGulY8JxsABo2QvLshr3I-AICAFl6Sm1aKblAt25BwR0ez2_mwo2ZZUjR2T11M1M_1cMKJLgknb4s_ITXWrsnYM42O-lCSmbw5nou3dH9eYsGQfQx0WtOl2h7n-CeefaYloSkzhvKavHDmmPHN43pLfn7-9OP-a_Pw_cu3-7uHxgrgpRFMdAgjE1wq2ztmoRulMNC7unNKKXCD68UoetY7I7pWOQ4ox6mTY9-3tr0l76916y9-rZiLnn22eDyagHHNmqtODIMUA6_ou3_QQ1xTqK-r1NAKJpVklZJXyqaYc0Knl-Rnk86agb440Qf914m-ONFXJzX17WODdbzEnhKfJFTg4xXAOpGTx6Sz9RhsHXxCW_QU_f-7_AbXA6Oo</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Liu, Chien-Liang</creator><creator>Lee, Min-Hsuan</creator><creator>Hsueh, Shan-Ni</creator><creator>Chung, Chia-Chen</creator><creator>Lin, Chun-Ju</creator><creator>Chang, Po-Han</creator><creator>Luo, An-Chun</creator><creator>Weng, Hsuan-Chi</creator><creator>Lee, Yu-Hsien</creator><creator>Dai, Ming-Ji</creator><creator>Tsai, Min-Juei</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2724-7199</orcidid></search><sort><creationdate>202404</creationdate><title>A bagging approach for improved predictive accuracy of intradialytic hypotension during hemodialysis treatment</title><author>Liu, Chien-Liang ; Lee, Min-Hsuan ; Hsueh, Shan-Ni ; Chung, Chia-Chen ; Lin, Chun-Ju ; Chang, Po-Han ; Luo, An-Chun ; Weng, Hsuan-Chi ; Lee, Yu-Hsien ; Dai, Ming-Ji ; Tsai, Min-Juei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-4145e0b14289c6f1c05b84a06fc05f9990f7f64b4616fa4539f20e8bd58b663c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Bagging</topic><topic>Class imbalance</topic><topic>Datasets</topic><topic>Empirical analysis</topic><topic>Ensemble learning</topic><topic>Hemodialysis</topic><topic>Humans</topic><topic>Hypotension</topic><topic>Hypotension - etiology</topic><topic>Intradialytic hypotension</topic><topic>Medical personnel</topic><topic>Patients</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Preempting</topic><topic>Renal Dialysis - adverse effects</topic><topic>Renal Dialysis - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity analysis</topic><topic>UnderXGBoost</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chien-Liang</creatorcontrib><creatorcontrib>Lee, Min-Hsuan</creatorcontrib><creatorcontrib>Hsueh, Shan-Ni</creatorcontrib><creatorcontrib>Chung, Chia-Chen</creatorcontrib><creatorcontrib>Lin, Chun-Ju</creatorcontrib><creatorcontrib>Chang, Po-Han</creatorcontrib><creatorcontrib>Luo, An-Chun</creatorcontrib><creatorcontrib>Weng, Hsuan-Chi</creatorcontrib><creatorcontrib>Lee, Yu-Hsien</creatorcontrib><creatorcontrib>Dai, Ming-Ji</creatorcontrib><creatorcontrib>Tsai, Min-Juei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chien-Liang</au><au>Lee, Min-Hsuan</au><au>Hsueh, Shan-Ni</au><au>Chung, Chia-Chen</au><au>Lin, Chun-Ju</au><au>Chang, Po-Han</au><au>Luo, An-Chun</au><au>Weng, Hsuan-Chi</au><au>Lee, Yu-Hsien</au><au>Dai, Ming-Ji</au><au>Tsai, Min-Juei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bagging approach for improved predictive accuracy of intradialytic hypotension during hemodialysis treatment</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-04</date><risdate>2024</risdate><volume>172</volume><spage>108244</spage><pages>108244-</pages><artnum>108244</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>The primary objective of this study is to enhance the prediction accuracy of intradialytic hypotension in patients undergoing hemodialysis. A significant challenge in this context arises from the nature of the data derived from the monitoring devices and exhibits an extreme class imbalance problem. Traditional predictive models often display a bias towards the majority class, compromising the accuracy of minority class predictions. Therefore, we introduce a method called UnderXGBoost. This novel methodology combines the under-sampling, bagging, and XGBoost techniques to balance the dataset and improve predictive accuracy for the minority class. This method is characterized by its straightforward implementation and training efficiency. Empirical validation in a real-world dataset confirms the superior performance of UnderXGBoost compared to existing models in predicting intradialytic hypotension. Furthermore, our approach demonstrates versatility, allowing XGBoost to be substituted with other classifiers and still producing promising results. Sensitivity analysis was performed to assess the model’s robustness, reinforce its reliability, and indicate its applicability to a broader range of medical scenarios facing similar challenges of data imbalance. Our model aims to enable medical professionals to provide preemptive treatments more effectively, thereby improving patient care and prognosis. This study contributes a novel and effective solution to a critical issue in medical prediction, thus broadening the application spectrum of predictive modeling in the healthcare domain.
[Display omitted]
•Enhanced prediction of intradialytic hypotension improves pre-emptive treatment in hemodialysis.•UnderXGBoost method addresses extreme dataset imbalance in medical prediction models.•Validation shows that UnderXGBoost outperforms alternatives in predicting hypotension events.•Sensitivity analysis confirms the robustness of UnderXGBoost for clinical applications.•The proposed method offers a new solution to various medical problems with imbalanced data.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38457931</pmid><doi>10.1016/j.compbiomed.2024.108244</doi><orcidid>https://orcid.org/0000-0002-2724-7199</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2024-04, Vol.172, p.108244, Article 108244 |
issn | 0010-4825 1879-0534 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_2954778472 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Accuracy Bagging Class imbalance Datasets Empirical analysis Ensemble learning Hemodialysis Humans Hypotension Hypotension - etiology Intradialytic hypotension Medical personnel Patients Prediction models Predictions Preempting Renal Dialysis - adverse effects Renal Dialysis - methods Reproducibility of Results Sensitivity analysis UnderXGBoost |
title | A bagging approach for improved predictive accuracy of intradialytic hypotension during hemodialysis treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bagging%20approach%20for%20improved%20predictive%20accuracy%20of%20intradialytic%20hypotension%20during%20hemodialysis%20treatment&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Liu,%20Chien-Liang&rft.date=2024-04&rft.volume=172&rft.spage=108244&rft.pages=108244-&rft.artnum=108244&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2024.108244&rft_dat=%3Cproquest_cross%3E2973418981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973418981&rft_id=info:pmid/38457931&rft_els_id=S0010482524003287&rfr_iscdi=true |