Filiform Corrosion on 6000 Series Aluminium: Kinetics and Inhibition Strategies

High levels of surface shear experienced during rolling, grinding or machining can cause 6000 series aluminium to develop an ultra-fine grained surface layers which dramatically increase susceptibility to filiform corrosion (FFC) under paint films. In-situ Scanning Kelvin Probe (SKP) measurements in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2006-07, Vol.519-521, p.629-634
Hauptverfasser: Coleman, A.J., Afseth, Andreas, Scamans, Geoff M., McMurray, H.N., Williams, G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 634
container_issue
container_start_page 629
container_title Materials science forum
container_volume 519-521
creator Coleman, A.J.
Afseth, Andreas
Scamans, Geoff M.
McMurray, H.N.
Williams, G.
description High levels of surface shear experienced during rolling, grinding or machining can cause 6000 series aluminium to develop an ultra-fine grained surface layers which dramatically increase susceptibility to filiform corrosion (FFC) under paint films. In-situ Scanning Kelvin Probe (SKP) measurements in humid air are used to compare the kinetics and mechanism of FFC on abraded and lacquer-coated samples of high copper containing AA6111 and low level copper AA6016. FFC is initiated by applying a small volume of aqueous HCl to a penetrative defect on polyvinylbutyral (PVB) coated alloy samples prior to placement in a chamber maintained at constant humidity and temperature. The SKP is then repeatedly scanned over a fixed surface area to produce a time-lapse animation showing the dynamic evolution of localized free corrosion potential patterns. The spatial distribution of potential variation provides insight into the FFC mechanism and the numerical integration of areas of dissimilar potential provides a measure of the time-dependent area of coating delamination. Various possible FFC inhibition strategies are investigated for use under circumstances where removal of the surface layer prior to application of an organic (paint) coating is not feasible. The two strategies shown in this paper are the use of an anti-corrosion pigments based on an intrinsically conducting polymer called polyaniline. An anion-exchange pigment called hydrotalcite is also used.
doi_str_mv 10.4028/www.scientific.net/MSF.519-521.629
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29547783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29547783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2169-12dc64f6e27c0c94dfb77c4b5370586aafb2917f90bc4435ae339b0393cffecc3</originalsourceid><addsrcrecordid>eNqVkM1KAzEURoMoWKvvMCsXwkzzM0km7mq1Wqx0UV2HTJrYlJlMTWYovr0pFVwLF-7mu9_lHADuECxKiKvJ4XAoonbG9846XXjTT97W84IikVOMCobFGRghxnAuOMXnYAQxpTktObsEVzHuICSoQmwEVnPXONuFNpt1IXTRdT5LwyCE2doEZ2I2bYbWeTe099mrS5-cjpnym2zht652_fFi3QfVm8-UvgYXVjXR3PzuMfiYP73PXvLl6nkxmy5zjRETOcIbzUrLDOYaalFubM25LmtKOKQVU8rWWCBuBax1WRKqDCGihkQQba3RmozB7al3H7qvwcReti5q0zTKm26IEosEyyuSgg-noE50MRgr98G1KnxLBOXRpUwu5Z9LmQhlcimTS5lcyuQylTyeShKnj73RW7nrhuAT4X9qfgDG94fn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29547783</pqid></control><display><type>article</type><title>Filiform Corrosion on 6000 Series Aluminium: Kinetics and Inhibition Strategies</title><source>Scientific.net Journals</source><creator>Coleman, A.J. ; Afseth, Andreas ; Scamans, Geoff M. ; McMurray, H.N. ; Williams, G.</creator><creatorcontrib>Coleman, A.J. ; Afseth, Andreas ; Scamans, Geoff M. ; McMurray, H.N. ; Williams, G.</creatorcontrib><description>High levels of surface shear experienced during rolling, grinding or machining can cause 6000 series aluminium to develop an ultra-fine grained surface layers which dramatically increase susceptibility to filiform corrosion (FFC) under paint films. In-situ Scanning Kelvin Probe (SKP) measurements in humid air are used to compare the kinetics and mechanism of FFC on abraded and lacquer-coated samples of high copper containing AA6111 and low level copper AA6016. FFC is initiated by applying a small volume of aqueous HCl to a penetrative defect on polyvinylbutyral (PVB) coated alloy samples prior to placement in a chamber maintained at constant humidity and temperature. The SKP is then repeatedly scanned over a fixed surface area to produce a time-lapse animation showing the dynamic evolution of localized free corrosion potential patterns. The spatial distribution of potential variation provides insight into the FFC mechanism and the numerical integration of areas of dissimilar potential provides a measure of the time-dependent area of coating delamination. Various possible FFC inhibition strategies are investigated for use under circumstances where removal of the surface layer prior to application of an organic (paint) coating is not feasible. The two strategies shown in this paper are the use of an anti-corrosion pigments based on an intrinsically conducting polymer called polyaniline. An anion-exchange pigment called hydrotalcite is also used.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.519-521.629</identifier><language>eng</language><publisher>Trans Tech Publications Ltd</publisher><ispartof>Materials science forum, 2006-07, Vol.519-521, p.629-634</ispartof><rights>2006 Trans Tech Publications Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2169-12dc64f6e27c0c94dfb77c4b5370586aafb2917f90bc4435ae339b0393cffecc3</citedby><cites>FETCH-LOGICAL-c2169-12dc64f6e27c0c94dfb77c4b5370586aafb2917f90bc4435ae339b0393cffecc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/38?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Coleman, A.J.</creatorcontrib><creatorcontrib>Afseth, Andreas</creatorcontrib><creatorcontrib>Scamans, Geoff M.</creatorcontrib><creatorcontrib>McMurray, H.N.</creatorcontrib><creatorcontrib>Williams, G.</creatorcontrib><title>Filiform Corrosion on 6000 Series Aluminium: Kinetics and Inhibition Strategies</title><title>Materials science forum</title><description>High levels of surface shear experienced during rolling, grinding or machining can cause 6000 series aluminium to develop an ultra-fine grained surface layers which dramatically increase susceptibility to filiform corrosion (FFC) under paint films. In-situ Scanning Kelvin Probe (SKP) measurements in humid air are used to compare the kinetics and mechanism of FFC on abraded and lacquer-coated samples of high copper containing AA6111 and low level copper AA6016. FFC is initiated by applying a small volume of aqueous HCl to a penetrative defect on polyvinylbutyral (PVB) coated alloy samples prior to placement in a chamber maintained at constant humidity and temperature. The SKP is then repeatedly scanned over a fixed surface area to produce a time-lapse animation showing the dynamic evolution of localized free corrosion potential patterns. The spatial distribution of potential variation provides insight into the FFC mechanism and the numerical integration of areas of dissimilar potential provides a measure of the time-dependent area of coating delamination. Various possible FFC inhibition strategies are investigated for use under circumstances where removal of the surface layer prior to application of an organic (paint) coating is not feasible. The two strategies shown in this paper are the use of an anti-corrosion pigments based on an intrinsically conducting polymer called polyaniline. An anion-exchange pigment called hydrotalcite is also used.</description><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqVkM1KAzEURoMoWKvvMCsXwkzzM0km7mq1Wqx0UV2HTJrYlJlMTWYovr0pFVwLF-7mu9_lHADuECxKiKvJ4XAoonbG9846XXjTT97W84IikVOMCobFGRghxnAuOMXnYAQxpTktObsEVzHuICSoQmwEVnPXONuFNpt1IXTRdT5LwyCE2doEZ2I2bYbWeTe099mrS5-cjpnym2zht652_fFi3QfVm8-UvgYXVjXR3PzuMfiYP73PXvLl6nkxmy5zjRETOcIbzUrLDOYaalFubM25LmtKOKQVU8rWWCBuBax1WRKqDCGihkQQba3RmozB7al3H7qvwcReti5q0zTKm26IEosEyyuSgg-noE50MRgr98G1KnxLBOXRpUwu5Z9LmQhlcimTS5lcyuQylTyeShKnj73RW7nrhuAT4X9qfgDG94fn</recordid><startdate>20060715</startdate><enddate>20060715</enddate><creator>Coleman, A.J.</creator><creator>Afseth, Andreas</creator><creator>Scamans, Geoff M.</creator><creator>McMurray, H.N.</creator><creator>Williams, G.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SE</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20060715</creationdate><title>Filiform Corrosion on 6000 Series Aluminium: Kinetics and Inhibition Strategies</title><author>Coleman, A.J. ; Afseth, Andreas ; Scamans, Geoff M. ; McMurray, H.N. ; Williams, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2169-12dc64f6e27c0c94dfb77c4b5370586aafb2917f90bc4435ae339b0393cffecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coleman, A.J.</creatorcontrib><creatorcontrib>Afseth, Andreas</creatorcontrib><creatorcontrib>Scamans, Geoff M.</creatorcontrib><creatorcontrib>McMurray, H.N.</creatorcontrib><creatorcontrib>Williams, G.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coleman, A.J.</au><au>Afseth, Andreas</au><au>Scamans, Geoff M.</au><au>McMurray, H.N.</au><au>Williams, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Filiform Corrosion on 6000 Series Aluminium: Kinetics and Inhibition Strategies</atitle><jtitle>Materials science forum</jtitle><date>2006-07-15</date><risdate>2006</risdate><volume>519-521</volume><spage>629</spage><epage>634</epage><pages>629-634</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><abstract>High levels of surface shear experienced during rolling, grinding or machining can cause 6000 series aluminium to develop an ultra-fine grained surface layers which dramatically increase susceptibility to filiform corrosion (FFC) under paint films. In-situ Scanning Kelvin Probe (SKP) measurements in humid air are used to compare the kinetics and mechanism of FFC on abraded and lacquer-coated samples of high copper containing AA6111 and low level copper AA6016. FFC is initiated by applying a small volume of aqueous HCl to a penetrative defect on polyvinylbutyral (PVB) coated alloy samples prior to placement in a chamber maintained at constant humidity and temperature. The SKP is then repeatedly scanned over a fixed surface area to produce a time-lapse animation showing the dynamic evolution of localized free corrosion potential patterns. The spatial distribution of potential variation provides insight into the FFC mechanism and the numerical integration of areas of dissimilar potential provides a measure of the time-dependent area of coating delamination. Various possible FFC inhibition strategies are investigated for use under circumstances where removal of the surface layer prior to application of an organic (paint) coating is not feasible. The two strategies shown in this paper are the use of an anti-corrosion pigments based on an intrinsically conducting polymer called polyaniline. An anion-exchange pigment called hydrotalcite is also used.</abstract><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.519-521.629</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0255-5476
ispartof Materials science forum, 2006-07, Vol.519-521, p.629-634
issn 0255-5476
1662-9752
1662-9752
language eng
recordid cdi_proquest_miscellaneous_29547783
source Scientific.net Journals
title Filiform Corrosion on 6000 Series Aluminium: Kinetics and Inhibition Strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Filiform%20Corrosion%20on%206000%20Series%20Aluminium:%20Kinetics%20and%20Inhibition%20Strategies&rft.jtitle=Materials%20science%20forum&rft.au=Coleman,%20A.J.&rft.date=2006-07-15&rft.volume=519-521&rft.spage=629&rft.epage=634&rft.pages=629-634&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.519-521.629&rft_dat=%3Cproquest_cross%3E29547783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29547783&rft_id=info:pmid/&rfr_iscdi=true