Mechanically and Thermally Guided, Honeycomb-like Nanocomposites with Strain-Insensitive High Thermal Conductivity for Stretchable Electronics

Thermal management materials have become increasingly crucial for stretchable electronic devices and systems. Drastically different from conventional thermally conductive materials, which are applied at static conditions, thermal management materials for stretchable electronics additionally require...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2024-03, Vol.18 (11), p.8199-8208
Hauptverfasser: Liang, Yahui, Zhao, Nifang, Gao, Weiwei, Bai, Hao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8208
container_issue 11
container_start_page 8199
container_title ACS nano
container_volume 18
creator Liang, Yahui
Zhao, Nifang
Gao, Weiwei
Bai, Hao
description Thermal management materials have become increasingly crucial for stretchable electronic devices and systems. Drastically different from conventional thermally conductive materials, which are applied at static conditions, thermal management materials for stretchable electronics additionally require strain-insensitive thermal conductivity, as they generally undergo cyclic deformation. However, realizing such a property remains challenging mainly because conventional thermally conductive polymer composites generally lack a mechanically guided design. Here, we report a honeycomb-like nanocomposite with a three-dimensional (3D) thermally conductive network fabricated by an arrayed ice-templating technique followed by elastomer infiltration. The hexagonal honeycomb-like structure with thin, compact walls (≈ 40 μm) endows our composite with a high through-plane thermal conductivity (≈ 1.54 W m–1 K–1) at an ultralow boron nitride nanosheet (BNNS) loading (≈ 0.85 vol %), with an enhancement factor of thermal conductivity up to 820% and thermal-insensitive strain up to 200%, which are 2.7 and 2 times higher than those reported in the literature. We report an intelligent strategy for the development of advanced thermal management materials for high-performance stretchable electronics.
doi_str_mv 10.1021/acsnano.3c12233
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2954777124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2954777124</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-91bbf7ae5c201610209a12276755b4eafe79d8559ca630a2a5fd41c373c8dd033</originalsourceid><addsrcrecordid>eNp1UclOwzAUtBCIpXDmhnxEghQ7juPkiKpCkVgOgMQtcuwXakjsYieg_gTfjKGFG6e3aGaePYPQISVjSlJ6JlWw0roxUzRNGdtAu7RkeUKK_Gnzr-d0B-2F8EIIF4XIt9EOKzIuGKO76PMG1Fxao2TbLrG0Gj_MwXc_0-VgNOhTPHMWlsp1ddKaV8C38WCcFi6YHgL-MP0c3_deGptc2QA2rs074Jl5nv-K4YmzelBxb_olbpz_JkAfL9ct4GkLqvcuPiLso61GtgEO1nWEHi-mD5NZcn13eTU5v04kY6xPSlrXjZDAVUpoHp0gpYwGiFxwXmcgGxClLjgvlcwZkankjc6oYoKpQmvC2Agdr3QX3r0NEPqqM0FB20oLbghVWvJMCEHTLELPVlDlXQgemmrhTSf9sqKk-g6hWodQrUOIjKO1-FB3oP_wv65HwMkKEJnVixu8jX_9V-4L_qCVsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2954777124</pqid></control><display><type>article</type><title>Mechanically and Thermally Guided, Honeycomb-like Nanocomposites with Strain-Insensitive High Thermal Conductivity for Stretchable Electronics</title><source>ACS Publications</source><creator>Liang, Yahui ; Zhao, Nifang ; Gao, Weiwei ; Bai, Hao</creator><creatorcontrib>Liang, Yahui ; Zhao, Nifang ; Gao, Weiwei ; Bai, Hao</creatorcontrib><description>Thermal management materials have become increasingly crucial for stretchable electronic devices and systems. Drastically different from conventional thermally conductive materials, which are applied at static conditions, thermal management materials for stretchable electronics additionally require strain-insensitive thermal conductivity, as they generally undergo cyclic deformation. However, realizing such a property remains challenging mainly because conventional thermally conductive polymer composites generally lack a mechanically guided design. Here, we report a honeycomb-like nanocomposite with a three-dimensional (3D) thermally conductive network fabricated by an arrayed ice-templating technique followed by elastomer infiltration. The hexagonal honeycomb-like structure with thin, compact walls (≈ 40 μm) endows our composite with a high through-plane thermal conductivity (≈ 1.54 W m–1 K–1) at an ultralow boron nitride nanosheet (BNNS) loading (≈ 0.85 vol %), with an enhancement factor of thermal conductivity up to 820% and thermal-insensitive strain up to 200%, which are 2.7 and 2 times higher than those reported in the literature. We report an intelligent strategy for the development of advanced thermal management materials for high-performance stretchable electronics.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.3c12233</identifier><identifier>PMID: 38457331</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2024-03, Vol.18 (11), p.8199-8208</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-91bbf7ae5c201610209a12276755b4eafe79d8559ca630a2a5fd41c373c8dd033</citedby><cites>FETCH-LOGICAL-a333t-91bbf7ae5c201610209a12276755b4eafe79d8559ca630a2a5fd41c373c8dd033</cites><orcidid>0000-0002-3348-6129 ; 0009-0008-5756-0267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.3c12233$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.3c12233$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38457331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Yahui</creatorcontrib><creatorcontrib>Zhao, Nifang</creatorcontrib><creatorcontrib>Gao, Weiwei</creatorcontrib><creatorcontrib>Bai, Hao</creatorcontrib><title>Mechanically and Thermally Guided, Honeycomb-like Nanocomposites with Strain-Insensitive High Thermal Conductivity for Stretchable Electronics</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Thermal management materials have become increasingly crucial for stretchable electronic devices and systems. Drastically different from conventional thermally conductive materials, which are applied at static conditions, thermal management materials for stretchable electronics additionally require strain-insensitive thermal conductivity, as they generally undergo cyclic deformation. However, realizing such a property remains challenging mainly because conventional thermally conductive polymer composites generally lack a mechanically guided design. Here, we report a honeycomb-like nanocomposite with a three-dimensional (3D) thermally conductive network fabricated by an arrayed ice-templating technique followed by elastomer infiltration. The hexagonal honeycomb-like structure with thin, compact walls (≈ 40 μm) endows our composite with a high through-plane thermal conductivity (≈ 1.54 W m–1 K–1) at an ultralow boron nitride nanosheet (BNNS) loading (≈ 0.85 vol %), with an enhancement factor of thermal conductivity up to 820% and thermal-insensitive strain up to 200%, which are 2.7 and 2 times higher than those reported in the literature. We report an intelligent strategy for the development of advanced thermal management materials for high-performance stretchable electronics.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UclOwzAUtBCIpXDmhnxEghQ7juPkiKpCkVgOgMQtcuwXakjsYieg_gTfjKGFG6e3aGaePYPQISVjSlJ6JlWw0roxUzRNGdtAu7RkeUKK_Gnzr-d0B-2F8EIIF4XIt9EOKzIuGKO76PMG1Fxao2TbLrG0Gj_MwXc_0-VgNOhTPHMWlsp1ddKaV8C38WCcFi6YHgL-MP0c3_deGptc2QA2rs074Jl5nv-K4YmzelBxb_olbpz_JkAfL9ct4GkLqvcuPiLso61GtgEO1nWEHi-mD5NZcn13eTU5v04kY6xPSlrXjZDAVUpoHp0gpYwGiFxwXmcgGxClLjgvlcwZkankjc6oYoKpQmvC2Agdr3QX3r0NEPqqM0FB20oLbghVWvJMCEHTLELPVlDlXQgemmrhTSf9sqKk-g6hWodQrUOIjKO1-FB3oP_wv65HwMkKEJnVixu8jX_9V-4L_qCVsw</recordid><startdate>20240319</startdate><enddate>20240319</enddate><creator>Liang, Yahui</creator><creator>Zhao, Nifang</creator><creator>Gao, Weiwei</creator><creator>Bai, Hao</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3348-6129</orcidid><orcidid>https://orcid.org/0009-0008-5756-0267</orcidid></search><sort><creationdate>20240319</creationdate><title>Mechanically and Thermally Guided, Honeycomb-like Nanocomposites with Strain-Insensitive High Thermal Conductivity for Stretchable Electronics</title><author>Liang, Yahui ; Zhao, Nifang ; Gao, Weiwei ; Bai, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-91bbf7ae5c201610209a12276755b4eafe79d8559ca630a2a5fd41c373c8dd033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Yahui</creatorcontrib><creatorcontrib>Zhao, Nifang</creatorcontrib><creatorcontrib>Gao, Weiwei</creatorcontrib><creatorcontrib>Bai, Hao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Yahui</au><au>Zhao, Nifang</au><au>Gao, Weiwei</au><au>Bai, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanically and Thermally Guided, Honeycomb-like Nanocomposites with Strain-Insensitive High Thermal Conductivity for Stretchable Electronics</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-03-19</date><risdate>2024</risdate><volume>18</volume><issue>11</issue><spage>8199</spage><epage>8208</epage><pages>8199-8208</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Thermal management materials have become increasingly crucial for stretchable electronic devices and systems. Drastically different from conventional thermally conductive materials, which are applied at static conditions, thermal management materials for stretchable electronics additionally require strain-insensitive thermal conductivity, as they generally undergo cyclic deformation. However, realizing such a property remains challenging mainly because conventional thermally conductive polymer composites generally lack a mechanically guided design. Here, we report a honeycomb-like nanocomposite with a three-dimensional (3D) thermally conductive network fabricated by an arrayed ice-templating technique followed by elastomer infiltration. The hexagonal honeycomb-like structure with thin, compact walls (≈ 40 μm) endows our composite with a high through-plane thermal conductivity (≈ 1.54 W m–1 K–1) at an ultralow boron nitride nanosheet (BNNS) loading (≈ 0.85 vol %), with an enhancement factor of thermal conductivity up to 820% and thermal-insensitive strain up to 200%, which are 2.7 and 2 times higher than those reported in the literature. We report an intelligent strategy for the development of advanced thermal management materials for high-performance stretchable electronics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38457331</pmid><doi>10.1021/acsnano.3c12233</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3348-6129</orcidid><orcidid>https://orcid.org/0009-0008-5756-0267</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2024-03, Vol.18 (11), p.8199-8208
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2954777124
source ACS Publications
title Mechanically and Thermally Guided, Honeycomb-like Nanocomposites with Strain-Insensitive High Thermal Conductivity for Stretchable Electronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A02%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanically%20and%20Thermally%20Guided,%20Honeycomb-like%20Nanocomposites%20with%20Strain-Insensitive%20High%20Thermal%20Conductivity%20for%20Stretchable%20Electronics&rft.jtitle=ACS%20nano&rft.au=Liang,%20Yahui&rft.date=2024-03-19&rft.volume=18&rft.issue=11&rft.spage=8199&rft.epage=8208&rft.pages=8199-8208&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.3c12233&rft_dat=%3Cproquest_cross%3E2954777124%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2954777124&rft_id=info:pmid/38457331&rfr_iscdi=true