Stable and ultralong room-temperature phosphorescent copolymers with excellent adhesion, resistance, and toughness

Developing stable room-temperature phosphorescence (RTP) emission without being affected by moisture and mechanical force remains a great challenge for purely organic systems, due to their triplet states sensitive to the infinitesimal motion of phosphors and the oxygen quencher. We report a kind of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2024-03, Vol.10 (10), p.eadk3354-eadk3354
Hauptverfasser: Miao, Yiling, Lin, Faxu, Guo, Danman, Chen, Jinzheng, Zhang, Kaimin, Wu, Tongfei, Huang, Huahua, Chi, Zhenguo, Yang, Zhiyong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing stable room-temperature phosphorescence (RTP) emission without being affected by moisture and mechanical force remains a great challenge for purely organic systems, due to their triplet states sensitive to the infinitesimal motion of phosphors and the oxygen quencher. We report a kind of highly robust phosphorescent systems, by doping a rigid phosphor into a copolymer (polyvinyl butyral resin) matrix with a balance of mutually exclusive features, including a rigidly hydrophilic hydrogen bond network and elastically hydrophobic constituent. Impressively, these RTP polymeric films have superior adhesive ability on various surfaces and showed reversible photoactivated RTP with lifetimes up to 5.82 seconds, which can be used as in situ modulated anticounterfeit labels. They can maintain a bright afterglow for over 25.0 seconds under various practical conditions, such as storage in refrigerators, soaking in natural water for a month, or even being subjected to strong collisions and impacts. These findings provide deep insights for developing stable ultralong RTP materials with desirable comprehensive performance.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.adk3354