Column Row Convolutional Neural Network: Reducing Parameters for Efficient Image Processing

Recent advancements in deep learning have achieved significant progress by increasing the number of parameters in a given model. However, this comes at the cost of computing resources, prompting researchers to explore model compression techniques that reduce the number of parameters while maintainin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2024-03, Vol.36 (4), p.1-758
Hauptverfasser: Im, Seongil, Jeong, Jae-Seung, Lee, Junseo, Shin, Changhwan, Cho, Jeong Ho, Ju, Hyunsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 758
container_issue 4
container_start_page 1
container_title Neural computation
container_volume 36
creator Im, Seongil
Jeong, Jae-Seung
Lee, Junseo
Shin, Changhwan
Cho, Jeong Ho
Ju, Hyunsu
description Recent advancements in deep learning have achieved significant progress by increasing the number of parameters in a given model. However, this comes at the cost of computing resources, prompting researchers to explore model compression techniques that reduce the number of parameters while maintaining or even improving performance. Convolutional neural networks (CNN) have been recognized as more efficient and effective than fully connected (FC) networks. We propose a column row convolutional neural network (CRCNN) in this letter that applies 1D convolution to image data, significantly reducing the number of learning parameters and operational steps. The CRCNN uses column and row local receptive fields to perform data abstraction, concatenating each direction's feature before connecting it to an FC layer. Experimental results demonstrate that the CRCNN maintains comparable accuracy while reducing the number of parameters and compared to prior work. Moreover, the CRCNN is employed for one-class anomaly detection, demonstrating its feasibility for various applications.
doi_str_mv 10.1162/neco_a_01653
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2954776960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2954776960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-ebca4a09f82a1618c40a34797bfc01e8d71f6d7eb7b9c8524e158cc40d29e3443</originalsourceid><addsrcrecordid>eNpd0EtLxDAUBeAgijM-dq4l4MaF1aR51p0UXyA6DAqCi5Cmt9KxbTRpHfz31ifi6nDh48A9CO1QckipTI86cN5YQ6gUbAVNqWAk0Vrfr6Ip0VmWKCnVBG3EuCCESErEOpowzYVSgk3RQ-6boe3w3C9x7rvX8epr39kGX8MQPqNf-vB0jOdQDq7uHvHMBttCDyHiygd8WlW1q6Hr8WVrHwHPgncQ4yi30Fplmwjb37mJ7s5Ob_OL5Orm_DI_uUpcqmSfQOEstySrdGqppNpxYhlXmSoqRyjoUtFKlgoKVWROi5QDFdqNqkwzYJyzTbT_1fsc_MsAsTdtHR00je3AD9GkmeBKyUySke79ows_hPHdaBhhnHCScjaqgy_lgo8xQGWeQ93a8GYoMR-jm7-jj3z3u3QoWih_8c_K7B1Xkn4f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034040243</pqid></control><display><type>article</type><title>Column Row Convolutional Neural Network: Reducing Parameters for Efficient Image Processing</title><source>MIT Press Journals</source><creator>Im, Seongil ; Jeong, Jae-Seung ; Lee, Junseo ; Shin, Changhwan ; Cho, Jeong Ho ; Ju, Hyunsu</creator><creatorcontrib>Im, Seongil ; Jeong, Jae-Seung ; Lee, Junseo ; Shin, Changhwan ; Cho, Jeong Ho ; Ju, Hyunsu</creatorcontrib><description>Recent advancements in deep learning have achieved significant progress by increasing the number of parameters in a given model. However, this comes at the cost of computing resources, prompting researchers to explore model compression techniques that reduce the number of parameters while maintaining or even improving performance. Convolutional neural networks (CNN) have been recognized as more efficient and effective than fully connected (FC) networks. We propose a column row convolutional neural network (CRCNN) in this letter that applies 1D convolution to image data, significantly reducing the number of learning parameters and operational steps. The CRCNN uses column and row local receptive fields to perform data abstraction, concatenating each direction's feature before connecting it to an FC layer. Experimental results demonstrate that the CRCNN maintains comparable accuracy while reducing the number of parameters and compared to prior work. Moreover, the CRCNN is employed for one-class anomaly detection, demonstrating its feasibility for various applications.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/neco_a_01653</identifier><identifier>PMID: 38457753</identifier><language>eng</language><publisher>United States: MIT Press Journals, The</publisher><subject>Anomalies ; Artificial neural networks ; Deep learning ; Image processing ; Machine learning ; Mathematical models ; Neural networks ; Parameters</subject><ispartof>Neural computation, 2024-03, Vol.36 (4), p.1-758</ispartof><rights>2024 Massachusetts Institute of Technology.</rights><rights>Copyright MIT Press Journals, The 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c276t-ebca4a09f82a1618c40a34797bfc01e8d71f6d7eb7b9c8524e158cc40d29e3443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38457753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Im, Seongil</creatorcontrib><creatorcontrib>Jeong, Jae-Seung</creatorcontrib><creatorcontrib>Lee, Junseo</creatorcontrib><creatorcontrib>Shin, Changhwan</creatorcontrib><creatorcontrib>Cho, Jeong Ho</creatorcontrib><creatorcontrib>Ju, Hyunsu</creatorcontrib><title>Column Row Convolutional Neural Network: Reducing Parameters for Efficient Image Processing</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>Recent advancements in deep learning have achieved significant progress by increasing the number of parameters in a given model. However, this comes at the cost of computing resources, prompting researchers to explore model compression techniques that reduce the number of parameters while maintaining or even improving performance. Convolutional neural networks (CNN) have been recognized as more efficient and effective than fully connected (FC) networks. We propose a column row convolutional neural network (CRCNN) in this letter that applies 1D convolution to image data, significantly reducing the number of learning parameters and operational steps. The CRCNN uses column and row local receptive fields to perform data abstraction, concatenating each direction's feature before connecting it to an FC layer. Experimental results demonstrate that the CRCNN maintains comparable accuracy while reducing the number of parameters and compared to prior work. Moreover, the CRCNN is employed for one-class anomaly detection, demonstrating its feasibility for various applications.</description><subject>Anomalies</subject><subject>Artificial neural networks</subject><subject>Deep learning</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Parameters</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0EtLxDAUBeAgijM-dq4l4MaF1aR51p0UXyA6DAqCi5Cmt9KxbTRpHfz31ifi6nDh48A9CO1QckipTI86cN5YQ6gUbAVNqWAk0Vrfr6Ip0VmWKCnVBG3EuCCESErEOpowzYVSgk3RQ-6boe3w3C9x7rvX8epr39kGX8MQPqNf-vB0jOdQDq7uHvHMBttCDyHiygd8WlW1q6Hr8WVrHwHPgncQ4yi30Fplmwjb37mJ7s5Ob_OL5Orm_DI_uUpcqmSfQOEstySrdGqppNpxYhlXmSoqRyjoUtFKlgoKVWROi5QDFdqNqkwzYJyzTbT_1fsc_MsAsTdtHR00je3AD9GkmeBKyUySke79ows_hPHdaBhhnHCScjaqgy_lgo8xQGWeQ93a8GYoMR-jm7-jj3z3u3QoWih_8c_K7B1Xkn4f</recordid><startdate>20240321</startdate><enddate>20240321</enddate><creator>Im, Seongil</creator><creator>Jeong, Jae-Seung</creator><creator>Lee, Junseo</creator><creator>Shin, Changhwan</creator><creator>Cho, Jeong Ho</creator><creator>Ju, Hyunsu</creator><general>MIT Press Journals, The</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20240321</creationdate><title>Column Row Convolutional Neural Network: Reducing Parameters for Efficient Image Processing</title><author>Im, Seongil ; Jeong, Jae-Seung ; Lee, Junseo ; Shin, Changhwan ; Cho, Jeong Ho ; Ju, Hyunsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-ebca4a09f82a1618c40a34797bfc01e8d71f6d7eb7b9c8524e158cc40d29e3443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anomalies</topic><topic>Artificial neural networks</topic><topic>Deep learning</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Im, Seongil</creatorcontrib><creatorcontrib>Jeong, Jae-Seung</creatorcontrib><creatorcontrib>Lee, Junseo</creatorcontrib><creatorcontrib>Shin, Changhwan</creatorcontrib><creatorcontrib>Cho, Jeong Ho</creatorcontrib><creatorcontrib>Ju, Hyunsu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Im, Seongil</au><au>Jeong, Jae-Seung</au><au>Lee, Junseo</au><au>Shin, Changhwan</au><au>Cho, Jeong Ho</au><au>Ju, Hyunsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Column Row Convolutional Neural Network: Reducing Parameters for Efficient Image Processing</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2024-03-21</date><risdate>2024</risdate><volume>36</volume><issue>4</issue><spage>1</spage><epage>758</epage><pages>1-758</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><abstract>Recent advancements in deep learning have achieved significant progress by increasing the number of parameters in a given model. However, this comes at the cost of computing resources, prompting researchers to explore model compression techniques that reduce the number of parameters while maintaining or even improving performance. Convolutional neural networks (CNN) have been recognized as more efficient and effective than fully connected (FC) networks. We propose a column row convolutional neural network (CRCNN) in this letter that applies 1D convolution to image data, significantly reducing the number of learning parameters and operational steps. The CRCNN uses column and row local receptive fields to perform data abstraction, concatenating each direction's feature before connecting it to an FC layer. Experimental results demonstrate that the CRCNN maintains comparable accuracy while reducing the number of parameters and compared to prior work. Moreover, the CRCNN is employed for one-class anomaly detection, demonstrating its feasibility for various applications.</abstract><cop>United States</cop><pub>MIT Press Journals, The</pub><pmid>38457753</pmid><doi>10.1162/neco_a_01653</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0899-7667
ispartof Neural computation, 2024-03, Vol.36 (4), p.1-758
issn 0899-7667
1530-888X
language eng
recordid cdi_proquest_miscellaneous_2954776960
source MIT Press Journals
subjects Anomalies
Artificial neural networks
Deep learning
Image processing
Machine learning
Mathematical models
Neural networks
Parameters
title Column Row Convolutional Neural Network: Reducing Parameters for Efficient Image Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A08%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Column%20Row%20Convolutional%20Neural%20Network:%20Reducing%20Parameters%20for%20Efficient%20Image%20Processing&rft.jtitle=Neural%20computation&rft.au=Im,%20Seongil&rft.date=2024-03-21&rft.volume=36&rft.issue=4&rft.spage=1&rft.epage=758&rft.pages=1-758&rft.issn=0899-7667&rft.eissn=1530-888X&rft_id=info:doi/10.1162/neco_a_01653&rft_dat=%3Cproquest_cross%3E2954776960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3034040243&rft_id=info:pmid/38457753&rfr_iscdi=true