Column Row Convolutional Neural Network: Reducing Parameters for Efficient Image Processing
Recent advancements in deep learning have achieved significant progress by increasing the number of parameters in a given model. However, this comes at the cost of computing resources, prompting researchers to explore model compression techniques that reduce the number of parameters while maintainin...
Gespeichert in:
Veröffentlicht in: | Neural computation 2024-03, Vol.36 (4), p.1-758 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 758 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | Neural computation |
container_volume | 36 |
creator | Im, Seongil Jeong, Jae-Seung Lee, Junseo Shin, Changhwan Cho, Jeong Ho Ju, Hyunsu |
description | Recent advancements in deep learning have achieved significant progress by increasing the number of parameters in a given model. However, this comes at the cost of computing resources, prompting researchers to explore model compression techniques that reduce the number of parameters while maintaining or even improving performance. Convolutional neural networks (CNN) have been recognized as more efficient and effective than fully connected (FC) networks. We propose a column row convolutional neural network (CRCNN) in this letter that applies 1D convolution to image data, significantly reducing the number of learning parameters and operational steps. The CRCNN uses column and row local receptive fields to perform data abstraction, concatenating each direction's feature before connecting it to an FC layer. Experimental results demonstrate that the CRCNN maintains comparable accuracy while reducing the number of parameters and compared to prior work. Moreover, the CRCNN is employed for one-class anomaly detection, demonstrating its feasibility for various applications. |
doi_str_mv | 10.1162/neco_a_01653 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2954776960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2954776960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-ebca4a09f82a1618c40a34797bfc01e8d71f6d7eb7b9c8524e158cc40d29e3443</originalsourceid><addsrcrecordid>eNpd0EtLxDAUBeAgijM-dq4l4MaF1aR51p0UXyA6DAqCi5Cmt9KxbTRpHfz31ifi6nDh48A9CO1QckipTI86cN5YQ6gUbAVNqWAk0Vrfr6Ip0VmWKCnVBG3EuCCESErEOpowzYVSgk3RQ-6boe3w3C9x7rvX8epr39kGX8MQPqNf-vB0jOdQDq7uHvHMBttCDyHiygd8WlW1q6Hr8WVrHwHPgncQ4yi30Fplmwjb37mJ7s5Ob_OL5Orm_DI_uUpcqmSfQOEstySrdGqppNpxYhlXmSoqRyjoUtFKlgoKVWROi5QDFdqNqkwzYJyzTbT_1fsc_MsAsTdtHR00je3AD9GkmeBKyUySke79ows_hPHdaBhhnHCScjaqgy_lgo8xQGWeQ93a8GYoMR-jm7-jj3z3u3QoWih_8c_K7B1Xkn4f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034040243</pqid></control><display><type>article</type><title>Column Row Convolutional Neural Network: Reducing Parameters for Efficient Image Processing</title><source>MIT Press Journals</source><creator>Im, Seongil ; Jeong, Jae-Seung ; Lee, Junseo ; Shin, Changhwan ; Cho, Jeong Ho ; Ju, Hyunsu</creator><creatorcontrib>Im, Seongil ; Jeong, Jae-Seung ; Lee, Junseo ; Shin, Changhwan ; Cho, Jeong Ho ; Ju, Hyunsu</creatorcontrib><description>Recent advancements in deep learning have achieved significant progress by increasing the number of parameters in a given model. However, this comes at the cost of computing resources, prompting researchers to explore model compression techniques that reduce the number of parameters while maintaining or even improving performance. Convolutional neural networks (CNN) have been recognized as more efficient and effective than fully connected (FC) networks. We propose a column row convolutional neural network (CRCNN) in this letter that applies 1D convolution to image data, significantly reducing the number of learning parameters and operational steps. The CRCNN uses column and row local receptive fields to perform data abstraction, concatenating each direction's feature before connecting it to an FC layer. Experimental results demonstrate that the CRCNN maintains comparable accuracy while reducing the number of parameters and compared to prior work. Moreover, the CRCNN is employed for one-class anomaly detection, demonstrating its feasibility for various applications.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/neco_a_01653</identifier><identifier>PMID: 38457753</identifier><language>eng</language><publisher>United States: MIT Press Journals, The</publisher><subject>Anomalies ; Artificial neural networks ; Deep learning ; Image processing ; Machine learning ; Mathematical models ; Neural networks ; Parameters</subject><ispartof>Neural computation, 2024-03, Vol.36 (4), p.1-758</ispartof><rights>2024 Massachusetts Institute of Technology.</rights><rights>Copyright MIT Press Journals, The 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c276t-ebca4a09f82a1618c40a34797bfc01e8d71f6d7eb7b9c8524e158cc40d29e3443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38457753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Im, Seongil</creatorcontrib><creatorcontrib>Jeong, Jae-Seung</creatorcontrib><creatorcontrib>Lee, Junseo</creatorcontrib><creatorcontrib>Shin, Changhwan</creatorcontrib><creatorcontrib>Cho, Jeong Ho</creatorcontrib><creatorcontrib>Ju, Hyunsu</creatorcontrib><title>Column Row Convolutional Neural Network: Reducing Parameters for Efficient Image Processing</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>Recent advancements in deep learning have achieved significant progress by increasing the number of parameters in a given model. However, this comes at the cost of computing resources, prompting researchers to explore model compression techniques that reduce the number of parameters while maintaining or even improving performance. Convolutional neural networks (CNN) have been recognized as more efficient and effective than fully connected (FC) networks. We propose a column row convolutional neural network (CRCNN) in this letter that applies 1D convolution to image data, significantly reducing the number of learning parameters and operational steps. The CRCNN uses column and row local receptive fields to perform data abstraction, concatenating each direction's feature before connecting it to an FC layer. Experimental results demonstrate that the CRCNN maintains comparable accuracy while reducing the number of parameters and compared to prior work. Moreover, the CRCNN is employed for one-class anomaly detection, demonstrating its feasibility for various applications.</description><subject>Anomalies</subject><subject>Artificial neural networks</subject><subject>Deep learning</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Parameters</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0EtLxDAUBeAgijM-dq4l4MaF1aR51p0UXyA6DAqCi5Cmt9KxbTRpHfz31ifi6nDh48A9CO1QckipTI86cN5YQ6gUbAVNqWAk0Vrfr6Ip0VmWKCnVBG3EuCCESErEOpowzYVSgk3RQ-6boe3w3C9x7rvX8epr39kGX8MQPqNf-vB0jOdQDq7uHvHMBttCDyHiygd8WlW1q6Hr8WVrHwHPgncQ4yi30Fplmwjb37mJ7s5Ob_OL5Orm_DI_uUpcqmSfQOEstySrdGqppNpxYhlXmSoqRyjoUtFKlgoKVWROi5QDFdqNqkwzYJyzTbT_1fsc_MsAsTdtHR00je3AD9GkmeBKyUySke79ows_hPHdaBhhnHCScjaqgy_lgo8xQGWeQ93a8GYoMR-jm7-jj3z3u3QoWih_8c_K7B1Xkn4f</recordid><startdate>20240321</startdate><enddate>20240321</enddate><creator>Im, Seongil</creator><creator>Jeong, Jae-Seung</creator><creator>Lee, Junseo</creator><creator>Shin, Changhwan</creator><creator>Cho, Jeong Ho</creator><creator>Ju, Hyunsu</creator><general>MIT Press Journals, The</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20240321</creationdate><title>Column Row Convolutional Neural Network: Reducing Parameters for Efficient Image Processing</title><author>Im, Seongil ; Jeong, Jae-Seung ; Lee, Junseo ; Shin, Changhwan ; Cho, Jeong Ho ; Ju, Hyunsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-ebca4a09f82a1618c40a34797bfc01e8d71f6d7eb7b9c8524e158cc40d29e3443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anomalies</topic><topic>Artificial neural networks</topic><topic>Deep learning</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Im, Seongil</creatorcontrib><creatorcontrib>Jeong, Jae-Seung</creatorcontrib><creatorcontrib>Lee, Junseo</creatorcontrib><creatorcontrib>Shin, Changhwan</creatorcontrib><creatorcontrib>Cho, Jeong Ho</creatorcontrib><creatorcontrib>Ju, Hyunsu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Im, Seongil</au><au>Jeong, Jae-Seung</au><au>Lee, Junseo</au><au>Shin, Changhwan</au><au>Cho, Jeong Ho</au><au>Ju, Hyunsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Column Row Convolutional Neural Network: Reducing Parameters for Efficient Image Processing</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2024-03-21</date><risdate>2024</risdate><volume>36</volume><issue>4</issue><spage>1</spage><epage>758</epage><pages>1-758</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><abstract>Recent advancements in deep learning have achieved significant progress by increasing the number of parameters in a given model. However, this comes at the cost of computing resources, prompting researchers to explore model compression techniques that reduce the number of parameters while maintaining or even improving performance. Convolutional neural networks (CNN) have been recognized as more efficient and effective than fully connected (FC) networks. We propose a column row convolutional neural network (CRCNN) in this letter that applies 1D convolution to image data, significantly reducing the number of learning parameters and operational steps. The CRCNN uses column and row local receptive fields to perform data abstraction, concatenating each direction's feature before connecting it to an FC layer. Experimental results demonstrate that the CRCNN maintains comparable accuracy while reducing the number of parameters and compared to prior work. Moreover, the CRCNN is employed for one-class anomaly detection, demonstrating its feasibility for various applications.</abstract><cop>United States</cop><pub>MIT Press Journals, The</pub><pmid>38457753</pmid><doi>10.1162/neco_a_01653</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-7667 |
ispartof | Neural computation, 2024-03, Vol.36 (4), p.1-758 |
issn | 0899-7667 1530-888X |
language | eng |
recordid | cdi_proquest_miscellaneous_2954776960 |
source | MIT Press Journals |
subjects | Anomalies Artificial neural networks Deep learning Image processing Machine learning Mathematical models Neural networks Parameters |
title | Column Row Convolutional Neural Network: Reducing Parameters for Efficient Image Processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A08%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Column%20Row%20Convolutional%20Neural%20Network:%20Reducing%20Parameters%20for%20Efficient%20Image%20Processing&rft.jtitle=Neural%20computation&rft.au=Im,%20Seongil&rft.date=2024-03-21&rft.volume=36&rft.issue=4&rft.spage=1&rft.epage=758&rft.pages=1-758&rft.issn=0899-7667&rft.eissn=1530-888X&rft_id=info:doi/10.1162/neco_a_01653&rft_dat=%3Cproquest_cross%3E2954776960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3034040243&rft_id=info:pmid/38457753&rfr_iscdi=true |