Mathematical Modeling of PI3K/Akt Pathway in Microglia
The motility of microglia involves intracellular signaling pathways that are predominantly controlled by changes in cytosolic Ca2+ and activation of PI3K/Akt (phosphoinositide-3-kinase/protein kinase B). In this letter, we develop a novel biophysical model for cytosolic Ca2+ activation of the PI3K/A...
Gespeichert in:
Veröffentlicht in: | Neural computation 2024-03, Vol.36 (4), p.645-676 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 676 |
---|---|
container_issue | 4 |
container_start_page | 645 |
container_title | Neural computation |
container_volume | 36 |
creator | Poshtkohi, Alireza Wade, John McDaid, Liam Liu, Junxiu Dallas, Mark L Bithell, Angela |
description | The motility of microglia involves intracellular signaling pathways that are predominantly controlled by changes in cytosolic Ca2+ and activation of PI3K/Akt (phosphoinositide-3-kinase/protein kinase B). In this letter, we develop a novel biophysical model for cytosolic Ca2+ activation of the PI3K/Akt pathway in microglia where Ca2+ influx is mediated by both P2Y purinergic receptors (P2YR) and P2X purinergic receptors (P2XR). The model parameters are estimated by employing optimization techniques to fit the model to phosphorylated Akt (pAkt) experimental modeling/in vitro data. The integrated model supports the hypothesis that Ca2+ influx via P2YR and P2XR can explain the experimentally reported biphasic transient responses in measuring pAkt levels. Our predictions reveal new quantitative insights into P2Rs on how they regulate Ca2+ and Akt in terms of physiological interactions and transient responses. It is shown that the upregulation of P2X receptors through a repetitive application of agonist results in a continual increase in the baseline [Ca2+], which causes the biphasic response to become a monophasic response which prolongs elevated levels of pAkt. |
doi_str_mv | 10.1162/neco_a_01643 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2954776844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2954776844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-bf672775ce4a4447d5f42320e1a9d02c6408d0e551ca6e934c5bc50f131b3ef33</originalsourceid><addsrcrecordid>eNpdkEtLw0AURgdRbK3uXEvAjQtj7-TOI1lK8VFssQsFd8NkMlNT86iZBOm_N6VVxNXdHA73O4ScU7ihVETjyppaaQVUMDwgQ8oRwjiO3w7JEOIkCaUQckBOvF8BgKDAj8kAY8alFDgkYq7bd1vqNje6COZ1Zou8Wga1CxZTfBrffrTBoie-9CbIq2Cem6ZeFrk-JUdOF96e7e-IvN7fvUwew9nzw3RyOwsNUtaGqRMykpIbyzRjTGbcsQgjsFQnGURGMIgzsJxTo4VNkBmeGg6OIk3ROsQRudp510392VnfqjL3xhaFrmzdeRUlnPVDYsZ69PIfuqq7puq_UwjIgAGVW-H1juqHeN9Yp9ZNXupmoyiobU_1t2ePX-ylXVra7Bf-CYjfalJuyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034040173</pqid></control><display><type>article</type><title>Mathematical Modeling of PI3K/Akt Pathway in Microglia</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Poshtkohi, Alireza ; Wade, John ; McDaid, Liam ; Liu, Junxiu ; Dallas, Mark L ; Bithell, Angela</creator><creatorcontrib>Poshtkohi, Alireza ; Wade, John ; McDaid, Liam ; Liu, Junxiu ; Dallas, Mark L ; Bithell, Angela</creatorcontrib><description>The motility of microglia involves intracellular signaling pathways that are predominantly controlled by changes in cytosolic Ca2+ and activation of PI3K/Akt (phosphoinositide-3-kinase/protein kinase B). In this letter, we develop a novel biophysical model for cytosolic Ca2+ activation of the PI3K/Akt pathway in microglia where Ca2+ influx is mediated by both P2Y purinergic receptors (P2YR) and P2X purinergic receptors (P2XR). The model parameters are estimated by employing optimization techniques to fit the model to phosphorylated Akt (pAkt) experimental modeling/in vitro data. The integrated model supports the hypothesis that Ca2+ influx via P2YR and P2XR can explain the experimentally reported biphasic transient responses in measuring pAkt levels. Our predictions reveal new quantitative insights into P2Rs on how they regulate Ca2+ and Akt in terms of physiological interactions and transient responses. It is shown that the upregulation of P2X receptors through a repetitive application of agonist results in a continual increase in the baseline [Ca2+], which causes the biphasic response to become a monophasic response which prolongs elevated levels of pAkt.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/neco_a_01643</identifier><identifier>PMID: 38457763</identifier><language>eng</language><publisher>United States: MIT Press Journals, The</publisher><subject>Adenosine Triphosphate - metabolism ; Calcium - metabolism ; Calcium ions ; Kinases ; Microglia - metabolism ; Optimization techniques ; Parameter estimation ; Phosphatidylinositol 3-Kinases - metabolism ; Proto-Oncogene Proteins c-akt - metabolism ; Receptors ; Receptors, Purinergic - metabolism ; Transient response</subject><ispartof>Neural computation, 2024-03, Vol.36 (4), p.645-676</ispartof><rights>2024 Massachusetts Institute of Technology.</rights><rights>Copyright MIT Press Journals, The 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-bf672775ce4a4447d5f42320e1a9d02c6408d0e551ca6e934c5bc50f131b3ef33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38457763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Poshtkohi, Alireza</creatorcontrib><creatorcontrib>Wade, John</creatorcontrib><creatorcontrib>McDaid, Liam</creatorcontrib><creatorcontrib>Liu, Junxiu</creatorcontrib><creatorcontrib>Dallas, Mark L</creatorcontrib><creatorcontrib>Bithell, Angela</creatorcontrib><title>Mathematical Modeling of PI3K/Akt Pathway in Microglia</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>The motility of microglia involves intracellular signaling pathways that are predominantly controlled by changes in cytosolic Ca2+ and activation of PI3K/Akt (phosphoinositide-3-kinase/protein kinase B). In this letter, we develop a novel biophysical model for cytosolic Ca2+ activation of the PI3K/Akt pathway in microglia where Ca2+ influx is mediated by both P2Y purinergic receptors (P2YR) and P2X purinergic receptors (P2XR). The model parameters are estimated by employing optimization techniques to fit the model to phosphorylated Akt (pAkt) experimental modeling/in vitro data. The integrated model supports the hypothesis that Ca2+ influx via P2YR and P2XR can explain the experimentally reported biphasic transient responses in measuring pAkt levels. Our predictions reveal new quantitative insights into P2Rs on how they regulate Ca2+ and Akt in terms of physiological interactions and transient responses. It is shown that the upregulation of P2X receptors through a repetitive application of agonist results in a continual increase in the baseline [Ca2+], which causes the biphasic response to become a monophasic response which prolongs elevated levels of pAkt.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Calcium - metabolism</subject><subject>Calcium ions</subject><subject>Kinases</subject><subject>Microglia - metabolism</subject><subject>Optimization techniques</subject><subject>Parameter estimation</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Receptors</subject><subject>Receptors, Purinergic - metabolism</subject><subject>Transient response</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkEtLw0AURgdRbK3uXEvAjQtj7-TOI1lK8VFssQsFd8NkMlNT86iZBOm_N6VVxNXdHA73O4ScU7ihVETjyppaaQVUMDwgQ8oRwjiO3w7JEOIkCaUQckBOvF8BgKDAj8kAY8alFDgkYq7bd1vqNje6COZ1Zou8Wga1CxZTfBrffrTBoie-9CbIq2Cem6ZeFrk-JUdOF96e7e-IvN7fvUwew9nzw3RyOwsNUtaGqRMykpIbyzRjTGbcsQgjsFQnGURGMIgzsJxTo4VNkBmeGg6OIk3ROsQRudp510392VnfqjL3xhaFrmzdeRUlnPVDYsZ69PIfuqq7puq_UwjIgAGVW-H1juqHeN9Yp9ZNXupmoyiobU_1t2ePX-ylXVra7Bf-CYjfalJuyg</recordid><startdate>20240321</startdate><enddate>20240321</enddate><creator>Poshtkohi, Alireza</creator><creator>Wade, John</creator><creator>McDaid, Liam</creator><creator>Liu, Junxiu</creator><creator>Dallas, Mark L</creator><creator>Bithell, Angela</creator><general>MIT Press Journals, The</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20240321</creationdate><title>Mathematical Modeling of PI3K/Akt Pathway in Microglia</title><author>Poshtkohi, Alireza ; Wade, John ; McDaid, Liam ; Liu, Junxiu ; Dallas, Mark L ; Bithell, Angela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-bf672775ce4a4447d5f42320e1a9d02c6408d0e551ca6e934c5bc50f131b3ef33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Calcium - metabolism</topic><topic>Calcium ions</topic><topic>Kinases</topic><topic>Microglia - metabolism</topic><topic>Optimization techniques</topic><topic>Parameter estimation</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Receptors</topic><topic>Receptors, Purinergic - metabolism</topic><topic>Transient response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poshtkohi, Alireza</creatorcontrib><creatorcontrib>Wade, John</creatorcontrib><creatorcontrib>McDaid, Liam</creatorcontrib><creatorcontrib>Liu, Junxiu</creatorcontrib><creatorcontrib>Dallas, Mark L</creatorcontrib><creatorcontrib>Bithell, Angela</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poshtkohi, Alireza</au><au>Wade, John</au><au>McDaid, Liam</au><au>Liu, Junxiu</au><au>Dallas, Mark L</au><au>Bithell, Angela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Modeling of PI3K/Akt Pathway in Microglia</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2024-03-21</date><risdate>2024</risdate><volume>36</volume><issue>4</issue><spage>645</spage><epage>676</epage><pages>645-676</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><abstract>The motility of microglia involves intracellular signaling pathways that are predominantly controlled by changes in cytosolic Ca2+ and activation of PI3K/Akt (phosphoinositide-3-kinase/protein kinase B). In this letter, we develop a novel biophysical model for cytosolic Ca2+ activation of the PI3K/Akt pathway in microglia where Ca2+ influx is mediated by both P2Y purinergic receptors (P2YR) and P2X purinergic receptors (P2XR). The model parameters are estimated by employing optimization techniques to fit the model to phosphorylated Akt (pAkt) experimental modeling/in vitro data. The integrated model supports the hypothesis that Ca2+ influx via P2YR and P2XR can explain the experimentally reported biphasic transient responses in measuring pAkt levels. Our predictions reveal new quantitative insights into P2Rs on how they regulate Ca2+ and Akt in terms of physiological interactions and transient responses. It is shown that the upregulation of P2X receptors through a repetitive application of agonist results in a continual increase in the baseline [Ca2+], which causes the biphasic response to become a monophasic response which prolongs elevated levels of pAkt.</abstract><cop>United States</cop><pub>MIT Press Journals, The</pub><pmid>38457763</pmid><doi>10.1162/neco_a_01643</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-7667 |
ispartof | Neural computation, 2024-03, Vol.36 (4), p.645-676 |
issn | 0899-7667 1530-888X |
language | eng |
recordid | cdi_proquest_miscellaneous_2954776844 |
source | MEDLINE; MIT Press Journals |
subjects | Adenosine Triphosphate - metabolism Calcium - metabolism Calcium ions Kinases Microglia - metabolism Optimization techniques Parameter estimation Phosphatidylinositol 3-Kinases - metabolism Proto-Oncogene Proteins c-akt - metabolism Receptors Receptors, Purinergic - metabolism Transient response |
title | Mathematical Modeling of PI3K/Akt Pathway in Microglia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Modeling%20of%20PI3K/Akt%20Pathway%20in%20Microglia&rft.jtitle=Neural%20computation&rft.au=Poshtkohi,%20Alireza&rft.date=2024-03-21&rft.volume=36&rft.issue=4&rft.spage=645&rft.epage=676&rft.pages=645-676&rft.issn=0899-7667&rft.eissn=1530-888X&rft_id=info:doi/10.1162/neco_a_01643&rft_dat=%3Cproquest_cross%3E2954776844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3034040173&rft_id=info:pmid/38457763&rfr_iscdi=true |