Qi‐dan‐dihuang decoction ameliorates renal fibrosis in diabetic rats via p38MAPK/AKT/mTOR signaling pathway

Context Qi‐dan‐dihuang decoction (QDD) has been used to treat diabetic kidney disease (DKD), but the underlying mechanisms are poorly understood. Objective This study reveals the mechanism by which QDD ameliorates DKD. Materials and Methods The compounds in QDD were identified by high‐performance li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental toxicology 2024-06, Vol.39 (6), p.3481-3499
Hauptverfasser: Kuang, Liuyan, You, Yanting, Qi, Jieying, Chen, Jieyu, Zhou, Xinghong, Ji, Shuai, Cheng, Jingru, Kwan, Hiu Yee, Jiang, Pingping, Sun, Xiaomin, Su, Mengting, Wang, Ming, Chen, Wenxiao, Luo, Ren, Zhao, Xiaoshan, Zhou, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3499
container_issue 6
container_start_page 3481
container_title Environmental toxicology
container_volume 39
creator Kuang, Liuyan
You, Yanting
Qi, Jieying
Chen, Jieyu
Zhou, Xinghong
Ji, Shuai
Cheng, Jingru
Kwan, Hiu Yee
Jiang, Pingping
Sun, Xiaomin
Su, Mengting
Wang, Ming
Chen, Wenxiao
Luo, Ren
Zhao, Xiaoshan
Zhou, Lin
description Context Qi‐dan‐dihuang decoction (QDD) has been used to treat diabetic kidney disease (DKD), but the underlying mechanisms are poorly understood. Objective This study reveals the mechanism by which QDD ameliorates DKD. Materials and Methods The compounds in QDD were identified by high‐performance liquid chromatography and quadrupole‐time‐of‐flight tandem mass spectrometry (HPLC‐Q‐TOF‐MS). Key targets and signaling pathways were screened through bioinformatics. Nondiabetic Lepr db/m mice were used as control group, while Lepr db/db mice were divided into model group, dapagliflozin group, 1% QDD‐low (QDD‐L), and 2% QDD‐high (QDD‐H) group. After 12 weeks of administration, 24 h urinary protein, serum creatinine, and blood urea nitrogen levels were detected. Kidney tissues damage and fibrosis were evaluated by pathological staining. In addition, 30 mmol/L glucose‐treated HK‐2 and NRK‐52E cells to induce DKD model. Cell activity and migration capacity as well as protein expression levels were evaluated. Results A total of 46 key target genes were identified. Functional enrichment analyses showed that key target genes were significantly enriched in the phosphatidylinositol 3‐kinase (PI3K)/protein kinase B (AKT) and mitogen‐activated protein kinase (MAPK) signaling pathways. In addition, in vivo and in vitro experiments confirmed that QDD ameliorated renal fibrosis in diabetic mice by resolving inflammation and inhibiting the epithelial‐mesenchymal transition (EMT) via the p38MAPK and AKT‐mammalian target of rapamycin (mTOR) pathways. Discussion and Conclusion QDD inhibits EMT and the inflammatory response through the p38MAPK and AKT/mTOR signaling pathways, thereby playing a protective role in renal fibrosis in DKD.
doi_str_mv 10.1002/tox.24179
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2954776554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054812237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3539-817d98ec2de97101b0da4847188dd030fea290fb3fdef0d0c5692aa154c852a13</originalsourceid><addsrcrecordid>eNp1kc9u1DAQhy0EoqVw4AWQJS7lkO74X2wfVxUF1FYLaJG4WY7ttK6SeImTtnvjEXhGngS323JA4uLx4ZtPM_ND6DWBIwJAF1O6PaKcSP0E7RNBaSWpVE_v_1BxUGQPvcj5CgB0LernaI8pLmpG9T5KX-Lvn7-8He7eeDnb4QL74JKbYhqw7UMX02inkPEYBtvhNjZjyjHjOGAfbROm6HABMr6OFm-YOl9-Pl0sT9eLfr36inO8KF2xSDd2uryx25foWWu7HF491AP07eT9-vhjdbb68Ol4eVY5JpiuFJFeq-CoD1oSIA14yxWXRCnvgUEbLNXQNqz1oQUPTtSaWksEd0pQS9gBOtx5N2P6MYc8mT5mF7rODiHN2VAtuJS1ELygb_9Br9I8lrGzYSC4IpQyWah3O8qV_fMYWrMZY2_HrSFg7lIwJQVzn0Jh3zwY56YP_i_5ePYCLHbATezC9v8ms1593yn_AJW4kp4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054812237</pqid></control><display><type>article</type><title>Qi‐dan‐dihuang decoction ameliorates renal fibrosis in diabetic rats via p38MAPK/AKT/mTOR signaling pathway</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Kuang, Liuyan ; You, Yanting ; Qi, Jieying ; Chen, Jieyu ; Zhou, Xinghong ; Ji, Shuai ; Cheng, Jingru ; Kwan, Hiu Yee ; Jiang, Pingping ; Sun, Xiaomin ; Su, Mengting ; Wang, Ming ; Chen, Wenxiao ; Luo, Ren ; Zhao, Xiaoshan ; Zhou, Lin</creator><creatorcontrib>Kuang, Liuyan ; You, Yanting ; Qi, Jieying ; Chen, Jieyu ; Zhou, Xinghong ; Ji, Shuai ; Cheng, Jingru ; Kwan, Hiu Yee ; Jiang, Pingping ; Sun, Xiaomin ; Su, Mengting ; Wang, Ming ; Chen, Wenxiao ; Luo, Ren ; Zhao, Xiaoshan ; Zhou, Lin</creatorcontrib><description>Context Qi‐dan‐dihuang decoction (QDD) has been used to treat diabetic kidney disease (DKD), but the underlying mechanisms are poorly understood. Objective This study reveals the mechanism by which QDD ameliorates DKD. Materials and Methods The compounds in QDD were identified by high‐performance liquid chromatography and quadrupole‐time‐of‐flight tandem mass spectrometry (HPLC‐Q‐TOF‐MS). Key targets and signaling pathways were screened through bioinformatics. Nondiabetic Lepr db/m mice were used as control group, while Lepr db/db mice were divided into model group, dapagliflozin group, 1% QDD‐low (QDD‐L), and 2% QDD‐high (QDD‐H) group. After 12 weeks of administration, 24 h urinary protein, serum creatinine, and blood urea nitrogen levels were detected. Kidney tissues damage and fibrosis were evaluated by pathological staining. In addition, 30 mmol/L glucose‐treated HK‐2 and NRK‐52E cells to induce DKD model. Cell activity and migration capacity as well as protein expression levels were evaluated. Results A total of 46 key target genes were identified. Functional enrichment analyses showed that key target genes were significantly enriched in the phosphatidylinositol 3‐kinase (PI3K)/protein kinase B (AKT) and mitogen‐activated protein kinase (MAPK) signaling pathways. In addition, in vivo and in vitro experiments confirmed that QDD ameliorated renal fibrosis in diabetic mice by resolving inflammation and inhibiting the epithelial‐mesenchymal transition (EMT) via the p38MAPK and AKT‐mammalian target of rapamycin (mTOR) pathways. Discussion and Conclusion QDD inhibits EMT and the inflammatory response through the p38MAPK and AKT/mTOR signaling pathways, thereby playing a protective role in renal fibrosis in DKD.</description><identifier>ISSN: 1520-4081</identifier><identifier>ISSN: 1522-7278</identifier><identifier>EISSN: 1522-7278</identifier><identifier>DOI: 10.1002/tox.24179</identifier><identifier>PMID: 38456329</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>1-Phosphatidylinositol 3-kinase ; AKT protein ; Animals ; Bioinformatics ; Cell Line ; Cell migration ; Chromatography ; Creatinine ; Damage detection ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus, Experimental - drug therapy ; diabetic kidney disease ; Diabetic Nephropathies - drug therapy ; Diabetic Nephropathies - pathology ; Drugs, Chinese Herbal - pharmacology ; epithelial‐mesenchymal transition ; Fibrosis ; Genes ; High performance liquid chromatography ; HPLC ; Humans ; Inflammation ; Inflammatory response ; Kidney - drug effects ; Kidney - pathology ; Kidney diseases ; Kidneys ; Kinases ; Liquid chromatography ; Male ; MAP kinase ; Mass spectrometry ; Mass spectroscopy ; Mice ; network pharmacology ; p38 Mitogen-Activated Protein Kinases - metabolism ; Proteins ; Proto-Oncogene Proteins c-akt - metabolism ; Qi‐dan‐dihuang decoction ; Quadrupoles ; Rapamycin ; Rats ; Rats, Sprague-Dawley ; renal fibrosis ; Signal transduction ; Signal Transduction - drug effects ; TOR protein ; TOR Serine-Threonine Kinases - metabolism ; Urea</subject><ispartof>Environmental toxicology, 2024-06, Vol.39 (6), p.3481-3499</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3539-817d98ec2de97101b0da4847188dd030fea290fb3fdef0d0c5692aa154c852a13</citedby><cites>FETCH-LOGICAL-c3539-817d98ec2de97101b0da4847188dd030fea290fb3fdef0d0c5692aa154c852a13</cites><orcidid>0000-0003-2952-6543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ftox.24179$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ftox.24179$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38456329$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuang, Liuyan</creatorcontrib><creatorcontrib>You, Yanting</creatorcontrib><creatorcontrib>Qi, Jieying</creatorcontrib><creatorcontrib>Chen, Jieyu</creatorcontrib><creatorcontrib>Zhou, Xinghong</creatorcontrib><creatorcontrib>Ji, Shuai</creatorcontrib><creatorcontrib>Cheng, Jingru</creatorcontrib><creatorcontrib>Kwan, Hiu Yee</creatorcontrib><creatorcontrib>Jiang, Pingping</creatorcontrib><creatorcontrib>Sun, Xiaomin</creatorcontrib><creatorcontrib>Su, Mengting</creatorcontrib><creatorcontrib>Wang, Ming</creatorcontrib><creatorcontrib>Chen, Wenxiao</creatorcontrib><creatorcontrib>Luo, Ren</creatorcontrib><creatorcontrib>Zhao, Xiaoshan</creatorcontrib><creatorcontrib>Zhou, Lin</creatorcontrib><title>Qi‐dan‐dihuang decoction ameliorates renal fibrosis in diabetic rats via p38MAPK/AKT/mTOR signaling pathway</title><title>Environmental toxicology</title><addtitle>Environ Toxicol</addtitle><description>Context Qi‐dan‐dihuang decoction (QDD) has been used to treat diabetic kidney disease (DKD), but the underlying mechanisms are poorly understood. Objective This study reveals the mechanism by which QDD ameliorates DKD. Materials and Methods The compounds in QDD were identified by high‐performance liquid chromatography and quadrupole‐time‐of‐flight tandem mass spectrometry (HPLC‐Q‐TOF‐MS). Key targets and signaling pathways were screened through bioinformatics. Nondiabetic Lepr db/m mice were used as control group, while Lepr db/db mice were divided into model group, dapagliflozin group, 1% QDD‐low (QDD‐L), and 2% QDD‐high (QDD‐H) group. After 12 weeks of administration, 24 h urinary protein, serum creatinine, and blood urea nitrogen levels were detected. Kidney tissues damage and fibrosis were evaluated by pathological staining. In addition, 30 mmol/L glucose‐treated HK‐2 and NRK‐52E cells to induce DKD model. Cell activity and migration capacity as well as protein expression levels were evaluated. Results A total of 46 key target genes were identified. Functional enrichment analyses showed that key target genes were significantly enriched in the phosphatidylinositol 3‐kinase (PI3K)/protein kinase B (AKT) and mitogen‐activated protein kinase (MAPK) signaling pathways. In addition, in vivo and in vitro experiments confirmed that QDD ameliorated renal fibrosis in diabetic mice by resolving inflammation and inhibiting the epithelial‐mesenchymal transition (EMT) via the p38MAPK and AKT‐mammalian target of rapamycin (mTOR) pathways. Discussion and Conclusion QDD inhibits EMT and the inflammatory response through the p38MAPK and AKT/mTOR signaling pathways, thereby playing a protective role in renal fibrosis in DKD.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Bioinformatics</subject><subject>Cell Line</subject><subject>Cell migration</subject><subject>Chromatography</subject><subject>Creatinine</subject><subject>Damage detection</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Experimental - drug therapy</subject><subject>diabetic kidney disease</subject><subject>Diabetic Nephropathies - drug therapy</subject><subject>Diabetic Nephropathies - pathology</subject><subject>Drugs, Chinese Herbal - pharmacology</subject><subject>epithelial‐mesenchymal transition</subject><subject>Fibrosis</subject><subject>Genes</subject><subject>High performance liquid chromatography</subject><subject>HPLC</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Inflammatory response</subject><subject>Kidney - drug effects</subject><subject>Kidney - pathology</subject><subject>Kidney diseases</subject><subject>Kidneys</subject><subject>Kinases</subject><subject>Liquid chromatography</subject><subject>Male</subject><subject>MAP kinase</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mice</subject><subject>network pharmacology</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Qi‐dan‐dihuang decoction</subject><subject>Quadrupoles</subject><subject>Rapamycin</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>renal fibrosis</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Urea</subject><issn>1520-4081</issn><issn>1522-7278</issn><issn>1522-7278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9u1DAQhy0EoqVw4AWQJS7lkO74X2wfVxUF1FYLaJG4WY7ttK6SeImTtnvjEXhGngS323JA4uLx4ZtPM_ND6DWBIwJAF1O6PaKcSP0E7RNBaSWpVE_v_1BxUGQPvcj5CgB0LernaI8pLmpG9T5KX-Lvn7-8He7eeDnb4QL74JKbYhqw7UMX02inkPEYBtvhNjZjyjHjOGAfbROm6HABMr6OFm-YOl9-Pl0sT9eLfr36inO8KF2xSDd2uryx25foWWu7HF491AP07eT9-vhjdbb68Ol4eVY5JpiuFJFeq-CoD1oSIA14yxWXRCnvgUEbLNXQNqz1oQUPTtSaWksEd0pQS9gBOtx5N2P6MYc8mT5mF7rODiHN2VAtuJS1ELygb_9Br9I8lrGzYSC4IpQyWah3O8qV_fMYWrMZY2_HrSFg7lIwJQVzn0Jh3zwY56YP_i_5ePYCLHbATezC9v8ms1593yn_AJW4kp4</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Kuang, Liuyan</creator><creator>You, Yanting</creator><creator>Qi, Jieying</creator><creator>Chen, Jieyu</creator><creator>Zhou, Xinghong</creator><creator>Ji, Shuai</creator><creator>Cheng, Jingru</creator><creator>Kwan, Hiu Yee</creator><creator>Jiang, Pingping</creator><creator>Sun, Xiaomin</creator><creator>Su, Mengting</creator><creator>Wang, Ming</creator><creator>Chen, Wenxiao</creator><creator>Luo, Ren</creator><creator>Zhao, Xiaoshan</creator><creator>Zhou, Lin</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M7N</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2952-6543</orcidid></search><sort><creationdate>202406</creationdate><title>Qi‐dan‐dihuang decoction ameliorates renal fibrosis in diabetic rats via p38MAPK/AKT/mTOR signaling pathway</title><author>Kuang, Liuyan ; You, Yanting ; Qi, Jieying ; Chen, Jieyu ; Zhou, Xinghong ; Ji, Shuai ; Cheng, Jingru ; Kwan, Hiu Yee ; Jiang, Pingping ; Sun, Xiaomin ; Su, Mengting ; Wang, Ming ; Chen, Wenxiao ; Luo, Ren ; Zhao, Xiaoshan ; Zhou, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3539-817d98ec2de97101b0da4847188dd030fea290fb3fdef0d0c5692aa154c852a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Bioinformatics</topic><topic>Cell Line</topic><topic>Cell migration</topic><topic>Chromatography</topic><topic>Creatinine</topic><topic>Damage detection</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Experimental - drug therapy</topic><topic>diabetic kidney disease</topic><topic>Diabetic Nephropathies - drug therapy</topic><topic>Diabetic Nephropathies - pathology</topic><topic>Drugs, Chinese Herbal - pharmacology</topic><topic>epithelial‐mesenchymal transition</topic><topic>Fibrosis</topic><topic>Genes</topic><topic>High performance liquid chromatography</topic><topic>HPLC</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Inflammatory response</topic><topic>Kidney - drug effects</topic><topic>Kidney - pathology</topic><topic>Kidney diseases</topic><topic>Kidneys</topic><topic>Kinases</topic><topic>Liquid chromatography</topic><topic>Male</topic><topic>MAP kinase</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mice</topic><topic>network pharmacology</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Qi‐dan‐dihuang decoction</topic><topic>Quadrupoles</topic><topic>Rapamycin</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>renal fibrosis</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Urea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuang, Liuyan</creatorcontrib><creatorcontrib>You, Yanting</creatorcontrib><creatorcontrib>Qi, Jieying</creatorcontrib><creatorcontrib>Chen, Jieyu</creatorcontrib><creatorcontrib>Zhou, Xinghong</creatorcontrib><creatorcontrib>Ji, Shuai</creatorcontrib><creatorcontrib>Cheng, Jingru</creatorcontrib><creatorcontrib>Kwan, Hiu Yee</creatorcontrib><creatorcontrib>Jiang, Pingping</creatorcontrib><creatorcontrib>Sun, Xiaomin</creatorcontrib><creatorcontrib>Su, Mengting</creatorcontrib><creatorcontrib>Wang, Ming</creatorcontrib><creatorcontrib>Chen, Wenxiao</creatorcontrib><creatorcontrib>Luo, Ren</creatorcontrib><creatorcontrib>Zhao, Xiaoshan</creatorcontrib><creatorcontrib>Zhou, Lin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuang, Liuyan</au><au>You, Yanting</au><au>Qi, Jieying</au><au>Chen, Jieyu</au><au>Zhou, Xinghong</au><au>Ji, Shuai</au><au>Cheng, Jingru</au><au>Kwan, Hiu Yee</au><au>Jiang, Pingping</au><au>Sun, Xiaomin</au><au>Su, Mengting</au><au>Wang, Ming</au><au>Chen, Wenxiao</au><au>Luo, Ren</au><au>Zhao, Xiaoshan</au><au>Zhou, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Qi‐dan‐dihuang decoction ameliorates renal fibrosis in diabetic rats via p38MAPK/AKT/mTOR signaling pathway</atitle><jtitle>Environmental toxicology</jtitle><addtitle>Environ Toxicol</addtitle><date>2024-06</date><risdate>2024</risdate><volume>39</volume><issue>6</issue><spage>3481</spage><epage>3499</epage><pages>3481-3499</pages><issn>1520-4081</issn><issn>1522-7278</issn><eissn>1522-7278</eissn><abstract>Context Qi‐dan‐dihuang decoction (QDD) has been used to treat diabetic kidney disease (DKD), but the underlying mechanisms are poorly understood. Objective This study reveals the mechanism by which QDD ameliorates DKD. Materials and Methods The compounds in QDD were identified by high‐performance liquid chromatography and quadrupole‐time‐of‐flight tandem mass spectrometry (HPLC‐Q‐TOF‐MS). Key targets and signaling pathways were screened through bioinformatics. Nondiabetic Lepr db/m mice were used as control group, while Lepr db/db mice were divided into model group, dapagliflozin group, 1% QDD‐low (QDD‐L), and 2% QDD‐high (QDD‐H) group. After 12 weeks of administration, 24 h urinary protein, serum creatinine, and blood urea nitrogen levels were detected. Kidney tissues damage and fibrosis were evaluated by pathological staining. In addition, 30 mmol/L glucose‐treated HK‐2 and NRK‐52E cells to induce DKD model. Cell activity and migration capacity as well as protein expression levels were evaluated. Results A total of 46 key target genes were identified. Functional enrichment analyses showed that key target genes were significantly enriched in the phosphatidylinositol 3‐kinase (PI3K)/protein kinase B (AKT) and mitogen‐activated protein kinase (MAPK) signaling pathways. In addition, in vivo and in vitro experiments confirmed that QDD ameliorated renal fibrosis in diabetic mice by resolving inflammation and inhibiting the epithelial‐mesenchymal transition (EMT) via the p38MAPK and AKT‐mammalian target of rapamycin (mTOR) pathways. Discussion and Conclusion QDD inhibits EMT and the inflammatory response through the p38MAPK and AKT/mTOR signaling pathways, thereby playing a protective role in renal fibrosis in DKD.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38456329</pmid><doi>10.1002/tox.24179</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2952-6543</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-4081
ispartof Environmental toxicology, 2024-06, Vol.39 (6), p.3481-3499
issn 1520-4081
1522-7278
1522-7278
language eng
recordid cdi_proquest_miscellaneous_2954776554
source Wiley-Blackwell Journals; MEDLINE
subjects 1-Phosphatidylinositol 3-kinase
AKT protein
Animals
Bioinformatics
Cell Line
Cell migration
Chromatography
Creatinine
Damage detection
Diabetes
Diabetes mellitus
Diabetes Mellitus, Experimental - drug therapy
diabetic kidney disease
Diabetic Nephropathies - drug therapy
Diabetic Nephropathies - pathology
Drugs, Chinese Herbal - pharmacology
epithelial‐mesenchymal transition
Fibrosis
Genes
High performance liquid chromatography
HPLC
Humans
Inflammation
Inflammatory response
Kidney - drug effects
Kidney - pathology
Kidney diseases
Kidneys
Kinases
Liquid chromatography
Male
MAP kinase
Mass spectrometry
Mass spectroscopy
Mice
network pharmacology
p38 Mitogen-Activated Protein Kinases - metabolism
Proteins
Proto-Oncogene Proteins c-akt - metabolism
Qi‐dan‐dihuang decoction
Quadrupoles
Rapamycin
Rats
Rats, Sprague-Dawley
renal fibrosis
Signal transduction
Signal Transduction - drug effects
TOR protein
TOR Serine-Threonine Kinases - metabolism
Urea
title Qi‐dan‐dihuang decoction ameliorates renal fibrosis in diabetic rats via p38MAPK/AKT/mTOR signaling pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Qi%E2%80%90dan%E2%80%90dihuang%20decoction%20ameliorates%20renal%20fibrosis%20in%20diabetic%20rats%20via%20p38MAPK/AKT/mTOR%20signaling%20pathway&rft.jtitle=Environmental%20toxicology&rft.au=Kuang,%20Liuyan&rft.date=2024-06&rft.volume=39&rft.issue=6&rft.spage=3481&rft.epage=3499&rft.pages=3481-3499&rft.issn=1520-4081&rft.eissn=1522-7278&rft_id=info:doi/10.1002/tox.24179&rft_dat=%3Cproquest_cross%3E3054812237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054812237&rft_id=info:pmid/38456329&rfr_iscdi=true