Degenerate oligonucleotide primer MIG‐seq: an effective PCR‐based method for high‐throughput genotyping
SUMMARY Next‐generation sequencing (NGS) library construction often involves using restriction enzymes to decrease genome complexity, enabling versatile polymorphism detection in plants. However, plant leaves frequently contain impurities, such as polyphenols, necessitating DNA purification before e...
Gespeichert in:
Veröffentlicht in: | The Plant journal : for cell and molecular biology 2024-06, Vol.118 (6), p.2296-2317 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2317 |
---|---|
container_issue | 6 |
container_start_page | 2296 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 118 |
creator | Nishimura, Kazusa Kokaji, Hiroyuki Motoki, Ko Yamazaki, Akira Nagasaka, Kyoka Mori, Takashi Takisawa, Rihito Yasui, Yasuo Kawai, Takashi Ushijima, Koichiro Yamasaki, Masanori Saito, Hiroki Nakano, Ryohei Nakazaki, Tetsuya |
description | SUMMARY
Next‐generation sequencing (NGS) library construction often involves using restriction enzymes to decrease genome complexity, enabling versatile polymorphism detection in plants. However, plant leaves frequently contain impurities, such as polyphenols, necessitating DNA purification before enzymatic reactions. To overcome this problem, we developed a PCR‐based method for expeditious NGS library preparation, offering flexibility in number of detected polymorphisms. By substituting a segment of the simple sequence repeat sequence in the MIG‐seq primer set (MIG‐seq being a PCR method enabling library construction with low‐quality DNA) with degenerate oligonucleotides, we introduced variability in detectable polymorphisms across various crops. This innovation, named degenerate oligonucleotide primer MIG‐seq (dpMIG‐seq), enabled a streamlined protocol for constructing dpMIG‐seq libraries from unpurified DNA, which was implemented stably in several crop species, including fruit trees. Furthermore, dpMIG‐seq facilitated efficient lineage selection in wheat and enabled linkage map construction and quantitative trait loci analysis in tomato, rice, and soybean without necessitating DNA concentration adjustments. These findings underscore the potential of the dpMIG‐seq protocol for advancing genetic analyses across diverse plant species.
Significance Statement
Given that plants contain impurities in their leaves, DNA purification is required to construct NGS libraries with reduced genomic complexity using restriction enzymes, which poses a hinderance to rapid genotyping. We developed degenerate oligonucleotide primer MIG‐seq and its accompanying protocol, a method for constructing NGS libraries with varying degrees of complexity reduction from unpurified plant DNA using PCR, and demonstrated the feasibility of expeditious genetic analysis across various crop species. |
doi_str_mv | 10.1111/tpj.16708 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2954773792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2954773792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3928-91f0c5074bcbab440a46d6aa5d19ddf48d234bb4f0cc947fc37550d18ec53c3e3</originalsourceid><addsrcrecordid>eNp10c9qFTEUBvBQlPZaXfQFSqAbXUybTDKTSXflqrVSsUiF7kImOfPnMjOZJhnl7nwEn9EnMfVWFwWzCRx-fAnnQ-iIklOazlmcN6e0FKTaQyvKyiJjlN09QysiS5IJTvMD9CKEDSFUsJLvowNW8UIKVq3Q-BZamMDrCNgNfeumxQzgYm8Bz74fweNPV5e_fvwMcH-O9YShacDE_hvgm_WXNK91AItHiJ2zuHEed33bpXnsvFvabl4iTg-4uJ37qX2Jnjd6CPDq8T5EX9-_u11_yK4_X16tL64zw2ReZZI2xBRE8NrUuuacaF7aUuvCUmltwyubM17XPCkjuWgME0VBLK3AFMwwYIfo9S539u5-gRDV2AcDw6AncEtQuSy4EEzIPNGTJ3TjFj-l3ylGSkFzWRGe1JudMt6F4KFRD8vRfqsoUQ8dqNSB-tNBssePiUs9gv0n_y49gbMd-N4PsP1_krq9-biL_A1qB5Sa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067129804</pqid></control><display><type>article</type><title>Degenerate oligonucleotide primer MIG‐seq: an effective PCR‐based method for high‐throughput genotyping</title><source>Wiley Online Library</source><creator>Nishimura, Kazusa ; Kokaji, Hiroyuki ; Motoki, Ko ; Yamazaki, Akira ; Nagasaka, Kyoka ; Mori, Takashi ; Takisawa, Rihito ; Yasui, Yasuo ; Kawai, Takashi ; Ushijima, Koichiro ; Yamasaki, Masanori ; Saito, Hiroki ; Nakano, Ryohei ; Nakazaki, Tetsuya</creator><creatorcontrib>Nishimura, Kazusa ; Kokaji, Hiroyuki ; Motoki, Ko ; Yamazaki, Akira ; Nagasaka, Kyoka ; Mori, Takashi ; Takisawa, Rihito ; Yasui, Yasuo ; Kawai, Takashi ; Ushijima, Koichiro ; Yamasaki, Masanori ; Saito, Hiroki ; Nakano, Ryohei ; Nakazaki, Tetsuya</creatorcontrib><description>SUMMARY
Next‐generation sequencing (NGS) library construction often involves using restriction enzymes to decrease genome complexity, enabling versatile polymorphism detection in plants. However, plant leaves frequently contain impurities, such as polyphenols, necessitating DNA purification before enzymatic reactions. To overcome this problem, we developed a PCR‐based method for expeditious NGS library preparation, offering flexibility in number of detected polymorphisms. By substituting a segment of the simple sequence repeat sequence in the MIG‐seq primer set (MIG‐seq being a PCR method enabling library construction with low‐quality DNA) with degenerate oligonucleotides, we introduced variability in detectable polymorphisms across various crops. This innovation, named degenerate oligonucleotide primer MIG‐seq (dpMIG‐seq), enabled a streamlined protocol for constructing dpMIG‐seq libraries from unpurified DNA, which was implemented stably in several crop species, including fruit trees. Furthermore, dpMIG‐seq facilitated efficient lineage selection in wheat and enabled linkage map construction and quantitative trait loci analysis in tomato, rice, and soybean without necessitating DNA concentration adjustments. These findings underscore the potential of the dpMIG‐seq protocol for advancing genetic analyses across diverse plant species.
Significance Statement
Given that plants contain impurities in their leaves, DNA purification is required to construct NGS libraries with reduced genomic complexity using restriction enzymes, which poses a hinderance to rapid genotyping. We developed degenerate oligonucleotide primer MIG‐seq and its accompanying protocol, a method for constructing NGS libraries with varying degrees of complexity reduction from unpurified plant DNA using PCR, and demonstrated the feasibility of expeditious genetic analysis across various crop species.</description><identifier>ISSN: 0960-7412</identifier><identifier>ISSN: 1365-313X</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.16708</identifier><identifier>PMID: 38459738</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Deoxyribonucleic acid ; DNA ; Fruit trees ; Gene mapping ; Genetic analysis ; Genetic diversity ; Genotyping ; Impurities ; Libraries ; next‐generation sequencing library ; oligonucleotide ; Oligonucleotides ; plant leaves ; Plant species ; Plants (botany) ; Polymerase chain reaction ; Polymorphism ; Polyphenols ; Quantitative trait loci ; Soybeans ; technical advance ; Tomatoes</subject><ispartof>The Plant journal : for cell and molecular biology, 2024-06, Vol.118 (6), p.2296-2317</ispartof><rights>2024 The Authors. published by Society for Experimental Biology and John Wiley & Sons Ltd.</rights><rights>2024 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3928-91f0c5074bcbab440a46d6aa5d19ddf48d234bb4f0cc947fc37550d18ec53c3e3</cites><orcidid>0000-0003-3904-5663 ; 0000-0003-3298-8271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.16708$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.16708$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38459738$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishimura, Kazusa</creatorcontrib><creatorcontrib>Kokaji, Hiroyuki</creatorcontrib><creatorcontrib>Motoki, Ko</creatorcontrib><creatorcontrib>Yamazaki, Akira</creatorcontrib><creatorcontrib>Nagasaka, Kyoka</creatorcontrib><creatorcontrib>Mori, Takashi</creatorcontrib><creatorcontrib>Takisawa, Rihito</creatorcontrib><creatorcontrib>Yasui, Yasuo</creatorcontrib><creatorcontrib>Kawai, Takashi</creatorcontrib><creatorcontrib>Ushijima, Koichiro</creatorcontrib><creatorcontrib>Yamasaki, Masanori</creatorcontrib><creatorcontrib>Saito, Hiroki</creatorcontrib><creatorcontrib>Nakano, Ryohei</creatorcontrib><creatorcontrib>Nakazaki, Tetsuya</creatorcontrib><title>Degenerate oligonucleotide primer MIG‐seq: an effective PCR‐based method for high‐throughput genotyping</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>SUMMARY
Next‐generation sequencing (NGS) library construction often involves using restriction enzymes to decrease genome complexity, enabling versatile polymorphism detection in plants. However, plant leaves frequently contain impurities, such as polyphenols, necessitating DNA purification before enzymatic reactions. To overcome this problem, we developed a PCR‐based method for expeditious NGS library preparation, offering flexibility in number of detected polymorphisms. By substituting a segment of the simple sequence repeat sequence in the MIG‐seq primer set (MIG‐seq being a PCR method enabling library construction with low‐quality DNA) with degenerate oligonucleotides, we introduced variability in detectable polymorphisms across various crops. This innovation, named degenerate oligonucleotide primer MIG‐seq (dpMIG‐seq), enabled a streamlined protocol for constructing dpMIG‐seq libraries from unpurified DNA, which was implemented stably in several crop species, including fruit trees. Furthermore, dpMIG‐seq facilitated efficient lineage selection in wheat and enabled linkage map construction and quantitative trait loci analysis in tomato, rice, and soybean without necessitating DNA concentration adjustments. These findings underscore the potential of the dpMIG‐seq protocol for advancing genetic analyses across diverse plant species.
Significance Statement
Given that plants contain impurities in their leaves, DNA purification is required to construct NGS libraries with reduced genomic complexity using restriction enzymes, which poses a hinderance to rapid genotyping. We developed degenerate oligonucleotide primer MIG‐seq and its accompanying protocol, a method for constructing NGS libraries with varying degrees of complexity reduction from unpurified plant DNA using PCR, and demonstrated the feasibility of expeditious genetic analysis across various crop species.</description><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Fruit trees</subject><subject>Gene mapping</subject><subject>Genetic analysis</subject><subject>Genetic diversity</subject><subject>Genotyping</subject><subject>Impurities</subject><subject>Libraries</subject><subject>next‐generation sequencing library</subject><subject>oligonucleotide</subject><subject>Oligonucleotides</subject><subject>plant leaves</subject><subject>Plant species</subject><subject>Plants (botany)</subject><subject>Polymerase chain reaction</subject><subject>Polymorphism</subject><subject>Polyphenols</subject><subject>Quantitative trait loci</subject><subject>Soybeans</subject><subject>technical advance</subject><subject>Tomatoes</subject><issn>0960-7412</issn><issn>1365-313X</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp10c9qFTEUBvBQlPZaXfQFSqAbXUybTDKTSXflqrVSsUiF7kImOfPnMjOZJhnl7nwEn9EnMfVWFwWzCRx-fAnnQ-iIklOazlmcN6e0FKTaQyvKyiJjlN09QysiS5IJTvMD9CKEDSFUsJLvowNW8UIKVq3Q-BZamMDrCNgNfeumxQzgYm8Bz74fweNPV5e_fvwMcH-O9YShacDE_hvgm_WXNK91AItHiJ2zuHEed33bpXnsvFvabl4iTg-4uJ37qX2Jnjd6CPDq8T5EX9-_u11_yK4_X16tL64zw2ReZZI2xBRE8NrUuuacaF7aUuvCUmltwyubM17XPCkjuWgME0VBLK3AFMwwYIfo9S539u5-gRDV2AcDw6AncEtQuSy4EEzIPNGTJ3TjFj-l3ylGSkFzWRGe1JudMt6F4KFRD8vRfqsoUQ8dqNSB-tNBssePiUs9gv0n_y49gbMd-N4PsP1_krq9-biL_A1qB5Sa</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Nishimura, Kazusa</creator><creator>Kokaji, Hiroyuki</creator><creator>Motoki, Ko</creator><creator>Yamazaki, Akira</creator><creator>Nagasaka, Kyoka</creator><creator>Mori, Takashi</creator><creator>Takisawa, Rihito</creator><creator>Yasui, Yasuo</creator><creator>Kawai, Takashi</creator><creator>Ushijima, Koichiro</creator><creator>Yamasaki, Masanori</creator><creator>Saito, Hiroki</creator><creator>Nakano, Ryohei</creator><creator>Nakazaki, Tetsuya</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3904-5663</orcidid><orcidid>https://orcid.org/0000-0003-3298-8271</orcidid></search><sort><creationdate>202406</creationdate><title>Degenerate oligonucleotide primer MIG‐seq: an effective PCR‐based method for high‐throughput genotyping</title><author>Nishimura, Kazusa ; Kokaji, Hiroyuki ; Motoki, Ko ; Yamazaki, Akira ; Nagasaka, Kyoka ; Mori, Takashi ; Takisawa, Rihito ; Yasui, Yasuo ; Kawai, Takashi ; Ushijima, Koichiro ; Yamasaki, Masanori ; Saito, Hiroki ; Nakano, Ryohei ; Nakazaki, Tetsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3928-91f0c5074bcbab440a46d6aa5d19ddf48d234bb4f0cc947fc37550d18ec53c3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Fruit trees</topic><topic>Gene mapping</topic><topic>Genetic analysis</topic><topic>Genetic diversity</topic><topic>Genotyping</topic><topic>Impurities</topic><topic>Libraries</topic><topic>next‐generation sequencing library</topic><topic>oligonucleotide</topic><topic>Oligonucleotides</topic><topic>plant leaves</topic><topic>Plant species</topic><topic>Plants (botany)</topic><topic>Polymerase chain reaction</topic><topic>Polymorphism</topic><topic>Polyphenols</topic><topic>Quantitative trait loci</topic><topic>Soybeans</topic><topic>technical advance</topic><topic>Tomatoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishimura, Kazusa</creatorcontrib><creatorcontrib>Kokaji, Hiroyuki</creatorcontrib><creatorcontrib>Motoki, Ko</creatorcontrib><creatorcontrib>Yamazaki, Akira</creatorcontrib><creatorcontrib>Nagasaka, Kyoka</creatorcontrib><creatorcontrib>Mori, Takashi</creatorcontrib><creatorcontrib>Takisawa, Rihito</creatorcontrib><creatorcontrib>Yasui, Yasuo</creatorcontrib><creatorcontrib>Kawai, Takashi</creatorcontrib><creatorcontrib>Ushijima, Koichiro</creatorcontrib><creatorcontrib>Yamasaki, Masanori</creatorcontrib><creatorcontrib>Saito, Hiroki</creatorcontrib><creatorcontrib>Nakano, Ryohei</creatorcontrib><creatorcontrib>Nakazaki, Tetsuya</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishimura, Kazusa</au><au>Kokaji, Hiroyuki</au><au>Motoki, Ko</au><au>Yamazaki, Akira</au><au>Nagasaka, Kyoka</au><au>Mori, Takashi</au><au>Takisawa, Rihito</au><au>Yasui, Yasuo</au><au>Kawai, Takashi</au><au>Ushijima, Koichiro</au><au>Yamasaki, Masanori</au><au>Saito, Hiroki</au><au>Nakano, Ryohei</au><au>Nakazaki, Tetsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degenerate oligonucleotide primer MIG‐seq: an effective PCR‐based method for high‐throughput genotyping</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2024-06</date><risdate>2024</risdate><volume>118</volume><issue>6</issue><spage>2296</spage><epage>2317</epage><pages>2296-2317</pages><issn>0960-7412</issn><issn>1365-313X</issn><eissn>1365-313X</eissn><abstract>SUMMARY
Next‐generation sequencing (NGS) library construction often involves using restriction enzymes to decrease genome complexity, enabling versatile polymorphism detection in plants. However, plant leaves frequently contain impurities, such as polyphenols, necessitating DNA purification before enzymatic reactions. To overcome this problem, we developed a PCR‐based method for expeditious NGS library preparation, offering flexibility in number of detected polymorphisms. By substituting a segment of the simple sequence repeat sequence in the MIG‐seq primer set (MIG‐seq being a PCR method enabling library construction with low‐quality DNA) with degenerate oligonucleotides, we introduced variability in detectable polymorphisms across various crops. This innovation, named degenerate oligonucleotide primer MIG‐seq (dpMIG‐seq), enabled a streamlined protocol for constructing dpMIG‐seq libraries from unpurified DNA, which was implemented stably in several crop species, including fruit trees. Furthermore, dpMIG‐seq facilitated efficient lineage selection in wheat and enabled linkage map construction and quantitative trait loci analysis in tomato, rice, and soybean without necessitating DNA concentration adjustments. These findings underscore the potential of the dpMIG‐seq protocol for advancing genetic analyses across diverse plant species.
Significance Statement
Given that plants contain impurities in their leaves, DNA purification is required to construct NGS libraries with reduced genomic complexity using restriction enzymes, which poses a hinderance to rapid genotyping. We developed degenerate oligonucleotide primer MIG‐seq and its accompanying protocol, a method for constructing NGS libraries with varying degrees of complexity reduction from unpurified plant DNA using PCR, and demonstrated the feasibility of expeditious genetic analysis across various crop species.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>38459738</pmid><doi>10.1111/tpj.16708</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3904-5663</orcidid><orcidid>https://orcid.org/0000-0003-3298-8271</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2024-06, Vol.118 (6), p.2296-2317 |
issn | 0960-7412 1365-313X 1365-313X |
language | eng |
recordid | cdi_proquest_miscellaneous_2954773792 |
source | Wiley Online Library |
subjects | Deoxyribonucleic acid DNA Fruit trees Gene mapping Genetic analysis Genetic diversity Genotyping Impurities Libraries next‐generation sequencing library oligonucleotide Oligonucleotides plant leaves Plant species Plants (botany) Polymerase chain reaction Polymorphism Polyphenols Quantitative trait loci Soybeans technical advance Tomatoes |
title | Degenerate oligonucleotide primer MIG‐seq: an effective PCR‐based method for high‐throughput genotyping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degenerate%20oligonucleotide%20primer%20MIG%E2%80%90seq:%20an%20effective%20PCR%E2%80%90based%20method%20for%20high%E2%80%90throughput%20genotyping&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Nishimura,%20Kazusa&rft.date=2024-06&rft.volume=118&rft.issue=6&rft.spage=2296&rft.epage=2317&rft.pages=2296-2317&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.16708&rft_dat=%3Cproquest_cross%3E2954773792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067129804&rft_id=info:pmid/38459738&rfr_iscdi=true |