Degenerate oligonucleotide primer MIG‐seq: an effective PCR‐based method for high‐throughput genotyping

SUMMARY Next‐generation sequencing (NGS) library construction often involves using restriction enzymes to decrease genome complexity, enabling versatile polymorphism detection in plants. However, plant leaves frequently contain impurities, such as polyphenols, necessitating DNA purification before e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2024-06, Vol.118 (6), p.2296-2317
Hauptverfasser: Nishimura, Kazusa, Kokaji, Hiroyuki, Motoki, Ko, Yamazaki, Akira, Nagasaka, Kyoka, Mori, Takashi, Takisawa, Rihito, Yasui, Yasuo, Kawai, Takashi, Ushijima, Koichiro, Yamasaki, Masanori, Saito, Hiroki, Nakano, Ryohei, Nakazaki, Tetsuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2317
container_issue 6
container_start_page 2296
container_title The Plant journal : for cell and molecular biology
container_volume 118
creator Nishimura, Kazusa
Kokaji, Hiroyuki
Motoki, Ko
Yamazaki, Akira
Nagasaka, Kyoka
Mori, Takashi
Takisawa, Rihito
Yasui, Yasuo
Kawai, Takashi
Ushijima, Koichiro
Yamasaki, Masanori
Saito, Hiroki
Nakano, Ryohei
Nakazaki, Tetsuya
description SUMMARY Next‐generation sequencing (NGS) library construction often involves using restriction enzymes to decrease genome complexity, enabling versatile polymorphism detection in plants. However, plant leaves frequently contain impurities, such as polyphenols, necessitating DNA purification before enzymatic reactions. To overcome this problem, we developed a PCR‐based method for expeditious NGS library preparation, offering flexibility in number of detected polymorphisms. By substituting a segment of the simple sequence repeat sequence in the MIG‐seq primer set (MIG‐seq being a PCR method enabling library construction with low‐quality DNA) with degenerate oligonucleotides, we introduced variability in detectable polymorphisms across various crops. This innovation, named degenerate oligonucleotide primer MIG‐seq (dpMIG‐seq), enabled a streamlined protocol for constructing dpMIG‐seq libraries from unpurified DNA, which was implemented stably in several crop species, including fruit trees. Furthermore, dpMIG‐seq facilitated efficient lineage selection in wheat and enabled linkage map construction and quantitative trait loci analysis in tomato, rice, and soybean without necessitating DNA concentration adjustments. These findings underscore the potential of the dpMIG‐seq protocol for advancing genetic analyses across diverse plant species. Significance Statement Given that plants contain impurities in their leaves, DNA purification is required to construct NGS libraries with reduced genomic complexity using restriction enzymes, which poses a hinderance to rapid genotyping. We developed degenerate oligonucleotide primer MIG‐seq and its accompanying protocol, a method for constructing NGS libraries with varying degrees of complexity reduction from unpurified plant DNA using PCR, and demonstrated the feasibility of expeditious genetic analysis across various crop species.
doi_str_mv 10.1111/tpj.16708
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2954773792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2954773792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3928-91f0c5074bcbab440a46d6aa5d19ddf48d234bb4f0cc947fc37550d18ec53c3e3</originalsourceid><addsrcrecordid>eNp10c9qFTEUBvBQlPZaXfQFSqAbXUybTDKTSXflqrVSsUiF7kImOfPnMjOZJhnl7nwEn9EnMfVWFwWzCRx-fAnnQ-iIklOazlmcN6e0FKTaQyvKyiJjlN09QysiS5IJTvMD9CKEDSFUsJLvowNW8UIKVq3Q-BZamMDrCNgNfeumxQzgYm8Bz74fweNPV5e_fvwMcH-O9YShacDE_hvgm_WXNK91AItHiJ2zuHEed33bpXnsvFvabl4iTg-4uJ37qX2Jnjd6CPDq8T5EX9-_u11_yK4_X16tL64zw2ReZZI2xBRE8NrUuuacaF7aUuvCUmltwyubM17XPCkjuWgME0VBLK3AFMwwYIfo9S539u5-gRDV2AcDw6AncEtQuSy4EEzIPNGTJ3TjFj-l3ylGSkFzWRGe1JudMt6F4KFRD8vRfqsoUQ8dqNSB-tNBssePiUs9gv0n_y49gbMd-N4PsP1_krq9-biL_A1qB5Sa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067129804</pqid></control><display><type>article</type><title>Degenerate oligonucleotide primer MIG‐seq: an effective PCR‐based method for high‐throughput genotyping</title><source>Wiley Online Library</source><creator>Nishimura, Kazusa ; Kokaji, Hiroyuki ; Motoki, Ko ; Yamazaki, Akira ; Nagasaka, Kyoka ; Mori, Takashi ; Takisawa, Rihito ; Yasui, Yasuo ; Kawai, Takashi ; Ushijima, Koichiro ; Yamasaki, Masanori ; Saito, Hiroki ; Nakano, Ryohei ; Nakazaki, Tetsuya</creator><creatorcontrib>Nishimura, Kazusa ; Kokaji, Hiroyuki ; Motoki, Ko ; Yamazaki, Akira ; Nagasaka, Kyoka ; Mori, Takashi ; Takisawa, Rihito ; Yasui, Yasuo ; Kawai, Takashi ; Ushijima, Koichiro ; Yamasaki, Masanori ; Saito, Hiroki ; Nakano, Ryohei ; Nakazaki, Tetsuya</creatorcontrib><description>SUMMARY Next‐generation sequencing (NGS) library construction often involves using restriction enzymes to decrease genome complexity, enabling versatile polymorphism detection in plants. However, plant leaves frequently contain impurities, such as polyphenols, necessitating DNA purification before enzymatic reactions. To overcome this problem, we developed a PCR‐based method for expeditious NGS library preparation, offering flexibility in number of detected polymorphisms. By substituting a segment of the simple sequence repeat sequence in the MIG‐seq primer set (MIG‐seq being a PCR method enabling library construction with low‐quality DNA) with degenerate oligonucleotides, we introduced variability in detectable polymorphisms across various crops. This innovation, named degenerate oligonucleotide primer MIG‐seq (dpMIG‐seq), enabled a streamlined protocol for constructing dpMIG‐seq libraries from unpurified DNA, which was implemented stably in several crop species, including fruit trees. Furthermore, dpMIG‐seq facilitated efficient lineage selection in wheat and enabled linkage map construction and quantitative trait loci analysis in tomato, rice, and soybean without necessitating DNA concentration adjustments. These findings underscore the potential of the dpMIG‐seq protocol for advancing genetic analyses across diverse plant species. Significance Statement Given that plants contain impurities in their leaves, DNA purification is required to construct NGS libraries with reduced genomic complexity using restriction enzymes, which poses a hinderance to rapid genotyping. We developed degenerate oligonucleotide primer MIG‐seq and its accompanying protocol, a method for constructing NGS libraries with varying degrees of complexity reduction from unpurified plant DNA using PCR, and demonstrated the feasibility of expeditious genetic analysis across various crop species.</description><identifier>ISSN: 0960-7412</identifier><identifier>ISSN: 1365-313X</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.16708</identifier><identifier>PMID: 38459738</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Deoxyribonucleic acid ; DNA ; Fruit trees ; Gene mapping ; Genetic analysis ; Genetic diversity ; Genotyping ; Impurities ; Libraries ; next‐generation sequencing library ; oligonucleotide ; Oligonucleotides ; plant leaves ; Plant species ; Plants (botany) ; Polymerase chain reaction ; Polymorphism ; Polyphenols ; Quantitative trait loci ; Soybeans ; technical advance ; Tomatoes</subject><ispartof>The Plant journal : for cell and molecular biology, 2024-06, Vol.118 (6), p.2296-2317</ispartof><rights>2024 The Authors. published by Society for Experimental Biology and John Wiley &amp; Sons Ltd.</rights><rights>2024 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3928-91f0c5074bcbab440a46d6aa5d19ddf48d234bb4f0cc947fc37550d18ec53c3e3</cites><orcidid>0000-0003-3904-5663 ; 0000-0003-3298-8271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.16708$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.16708$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38459738$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishimura, Kazusa</creatorcontrib><creatorcontrib>Kokaji, Hiroyuki</creatorcontrib><creatorcontrib>Motoki, Ko</creatorcontrib><creatorcontrib>Yamazaki, Akira</creatorcontrib><creatorcontrib>Nagasaka, Kyoka</creatorcontrib><creatorcontrib>Mori, Takashi</creatorcontrib><creatorcontrib>Takisawa, Rihito</creatorcontrib><creatorcontrib>Yasui, Yasuo</creatorcontrib><creatorcontrib>Kawai, Takashi</creatorcontrib><creatorcontrib>Ushijima, Koichiro</creatorcontrib><creatorcontrib>Yamasaki, Masanori</creatorcontrib><creatorcontrib>Saito, Hiroki</creatorcontrib><creatorcontrib>Nakano, Ryohei</creatorcontrib><creatorcontrib>Nakazaki, Tetsuya</creatorcontrib><title>Degenerate oligonucleotide primer MIG‐seq: an effective PCR‐based method for high‐throughput genotyping</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>SUMMARY Next‐generation sequencing (NGS) library construction often involves using restriction enzymes to decrease genome complexity, enabling versatile polymorphism detection in plants. However, plant leaves frequently contain impurities, such as polyphenols, necessitating DNA purification before enzymatic reactions. To overcome this problem, we developed a PCR‐based method for expeditious NGS library preparation, offering flexibility in number of detected polymorphisms. By substituting a segment of the simple sequence repeat sequence in the MIG‐seq primer set (MIG‐seq being a PCR method enabling library construction with low‐quality DNA) with degenerate oligonucleotides, we introduced variability in detectable polymorphisms across various crops. This innovation, named degenerate oligonucleotide primer MIG‐seq (dpMIG‐seq), enabled a streamlined protocol for constructing dpMIG‐seq libraries from unpurified DNA, which was implemented stably in several crop species, including fruit trees. Furthermore, dpMIG‐seq facilitated efficient lineage selection in wheat and enabled linkage map construction and quantitative trait loci analysis in tomato, rice, and soybean without necessitating DNA concentration adjustments. These findings underscore the potential of the dpMIG‐seq protocol for advancing genetic analyses across diverse plant species. Significance Statement Given that plants contain impurities in their leaves, DNA purification is required to construct NGS libraries with reduced genomic complexity using restriction enzymes, which poses a hinderance to rapid genotyping. We developed degenerate oligonucleotide primer MIG‐seq and its accompanying protocol, a method for constructing NGS libraries with varying degrees of complexity reduction from unpurified plant DNA using PCR, and demonstrated the feasibility of expeditious genetic analysis across various crop species.</description><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Fruit trees</subject><subject>Gene mapping</subject><subject>Genetic analysis</subject><subject>Genetic diversity</subject><subject>Genotyping</subject><subject>Impurities</subject><subject>Libraries</subject><subject>next‐generation sequencing library</subject><subject>oligonucleotide</subject><subject>Oligonucleotides</subject><subject>plant leaves</subject><subject>Plant species</subject><subject>Plants (botany)</subject><subject>Polymerase chain reaction</subject><subject>Polymorphism</subject><subject>Polyphenols</subject><subject>Quantitative trait loci</subject><subject>Soybeans</subject><subject>technical advance</subject><subject>Tomatoes</subject><issn>0960-7412</issn><issn>1365-313X</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp10c9qFTEUBvBQlPZaXfQFSqAbXUybTDKTSXflqrVSsUiF7kImOfPnMjOZJhnl7nwEn9EnMfVWFwWzCRx-fAnnQ-iIklOazlmcN6e0FKTaQyvKyiJjlN09QysiS5IJTvMD9CKEDSFUsJLvowNW8UIKVq3Q-BZamMDrCNgNfeumxQzgYm8Bz74fweNPV5e_fvwMcH-O9YShacDE_hvgm_WXNK91AItHiJ2zuHEed33bpXnsvFvabl4iTg-4uJ37qX2Jnjd6CPDq8T5EX9-_u11_yK4_X16tL64zw2ReZZI2xBRE8NrUuuacaF7aUuvCUmltwyubM17XPCkjuWgME0VBLK3AFMwwYIfo9S539u5-gRDV2AcDw6AncEtQuSy4EEzIPNGTJ3TjFj-l3ylGSkFzWRGe1JudMt6F4KFRD8vRfqsoUQ8dqNSB-tNBssePiUs9gv0n_y49gbMd-N4PsP1_krq9-biL_A1qB5Sa</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Nishimura, Kazusa</creator><creator>Kokaji, Hiroyuki</creator><creator>Motoki, Ko</creator><creator>Yamazaki, Akira</creator><creator>Nagasaka, Kyoka</creator><creator>Mori, Takashi</creator><creator>Takisawa, Rihito</creator><creator>Yasui, Yasuo</creator><creator>Kawai, Takashi</creator><creator>Ushijima, Koichiro</creator><creator>Yamasaki, Masanori</creator><creator>Saito, Hiroki</creator><creator>Nakano, Ryohei</creator><creator>Nakazaki, Tetsuya</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3904-5663</orcidid><orcidid>https://orcid.org/0000-0003-3298-8271</orcidid></search><sort><creationdate>202406</creationdate><title>Degenerate oligonucleotide primer MIG‐seq: an effective PCR‐based method for high‐throughput genotyping</title><author>Nishimura, Kazusa ; Kokaji, Hiroyuki ; Motoki, Ko ; Yamazaki, Akira ; Nagasaka, Kyoka ; Mori, Takashi ; Takisawa, Rihito ; Yasui, Yasuo ; Kawai, Takashi ; Ushijima, Koichiro ; Yamasaki, Masanori ; Saito, Hiroki ; Nakano, Ryohei ; Nakazaki, Tetsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3928-91f0c5074bcbab440a46d6aa5d19ddf48d234bb4f0cc947fc37550d18ec53c3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Fruit trees</topic><topic>Gene mapping</topic><topic>Genetic analysis</topic><topic>Genetic diversity</topic><topic>Genotyping</topic><topic>Impurities</topic><topic>Libraries</topic><topic>next‐generation sequencing library</topic><topic>oligonucleotide</topic><topic>Oligonucleotides</topic><topic>plant leaves</topic><topic>Plant species</topic><topic>Plants (botany)</topic><topic>Polymerase chain reaction</topic><topic>Polymorphism</topic><topic>Polyphenols</topic><topic>Quantitative trait loci</topic><topic>Soybeans</topic><topic>technical advance</topic><topic>Tomatoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishimura, Kazusa</creatorcontrib><creatorcontrib>Kokaji, Hiroyuki</creatorcontrib><creatorcontrib>Motoki, Ko</creatorcontrib><creatorcontrib>Yamazaki, Akira</creatorcontrib><creatorcontrib>Nagasaka, Kyoka</creatorcontrib><creatorcontrib>Mori, Takashi</creatorcontrib><creatorcontrib>Takisawa, Rihito</creatorcontrib><creatorcontrib>Yasui, Yasuo</creatorcontrib><creatorcontrib>Kawai, Takashi</creatorcontrib><creatorcontrib>Ushijima, Koichiro</creatorcontrib><creatorcontrib>Yamasaki, Masanori</creatorcontrib><creatorcontrib>Saito, Hiroki</creatorcontrib><creatorcontrib>Nakano, Ryohei</creatorcontrib><creatorcontrib>Nakazaki, Tetsuya</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishimura, Kazusa</au><au>Kokaji, Hiroyuki</au><au>Motoki, Ko</au><au>Yamazaki, Akira</au><au>Nagasaka, Kyoka</au><au>Mori, Takashi</au><au>Takisawa, Rihito</au><au>Yasui, Yasuo</au><au>Kawai, Takashi</au><au>Ushijima, Koichiro</au><au>Yamasaki, Masanori</au><au>Saito, Hiroki</au><au>Nakano, Ryohei</au><au>Nakazaki, Tetsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degenerate oligonucleotide primer MIG‐seq: an effective PCR‐based method for high‐throughput genotyping</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2024-06</date><risdate>2024</risdate><volume>118</volume><issue>6</issue><spage>2296</spage><epage>2317</epage><pages>2296-2317</pages><issn>0960-7412</issn><issn>1365-313X</issn><eissn>1365-313X</eissn><abstract>SUMMARY Next‐generation sequencing (NGS) library construction often involves using restriction enzymes to decrease genome complexity, enabling versatile polymorphism detection in plants. However, plant leaves frequently contain impurities, such as polyphenols, necessitating DNA purification before enzymatic reactions. To overcome this problem, we developed a PCR‐based method for expeditious NGS library preparation, offering flexibility in number of detected polymorphisms. By substituting a segment of the simple sequence repeat sequence in the MIG‐seq primer set (MIG‐seq being a PCR method enabling library construction with low‐quality DNA) with degenerate oligonucleotides, we introduced variability in detectable polymorphisms across various crops. This innovation, named degenerate oligonucleotide primer MIG‐seq (dpMIG‐seq), enabled a streamlined protocol for constructing dpMIG‐seq libraries from unpurified DNA, which was implemented stably in several crop species, including fruit trees. Furthermore, dpMIG‐seq facilitated efficient lineage selection in wheat and enabled linkage map construction and quantitative trait loci analysis in tomato, rice, and soybean without necessitating DNA concentration adjustments. These findings underscore the potential of the dpMIG‐seq protocol for advancing genetic analyses across diverse plant species. Significance Statement Given that plants contain impurities in their leaves, DNA purification is required to construct NGS libraries with reduced genomic complexity using restriction enzymes, which poses a hinderance to rapid genotyping. We developed degenerate oligonucleotide primer MIG‐seq and its accompanying protocol, a method for constructing NGS libraries with varying degrees of complexity reduction from unpurified plant DNA using PCR, and demonstrated the feasibility of expeditious genetic analysis across various crop species.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>38459738</pmid><doi>10.1111/tpj.16708</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3904-5663</orcidid><orcidid>https://orcid.org/0000-0003-3298-8271</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2024-06, Vol.118 (6), p.2296-2317
issn 0960-7412
1365-313X
1365-313X
language eng
recordid cdi_proquest_miscellaneous_2954773792
source Wiley Online Library
subjects Deoxyribonucleic acid
DNA
Fruit trees
Gene mapping
Genetic analysis
Genetic diversity
Genotyping
Impurities
Libraries
next‐generation sequencing library
oligonucleotide
Oligonucleotides
plant leaves
Plant species
Plants (botany)
Polymerase chain reaction
Polymorphism
Polyphenols
Quantitative trait loci
Soybeans
technical advance
Tomatoes
title Degenerate oligonucleotide primer MIG‐seq: an effective PCR‐based method for high‐throughput genotyping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degenerate%20oligonucleotide%20primer%20MIG%E2%80%90seq:%20an%20effective%20PCR%E2%80%90based%20method%20for%20high%E2%80%90throughput%20genotyping&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Nishimura,%20Kazusa&rft.date=2024-06&rft.volume=118&rft.issue=6&rft.spage=2296&rft.epage=2317&rft.pages=2296-2317&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.16708&rft_dat=%3Cproquest_cross%3E2954773792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067129804&rft_id=info:pmid/38459738&rfr_iscdi=true