Understanding the complex formation of falstatin; an endogenous macromolecular inhibitor of falcipains
Proteolytic activity constitutes a fundamental process essential for the survival of the malaria parasite and is thus highly regulated. Falstatin, a protease inhibitor of Plasmodium falciparum, tightly regulates the activity of cysteine hemoglobinases, falcipain-2 and 3 (FP2, FP3), by inhibiting FP2...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-04, Vol.265 (Pt 1), p.130420-130420, Article 130420 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 130420 |
---|---|
container_issue | Pt 1 |
container_start_page | 130420 |
container_title | International journal of biological macromolecules |
container_volume | 265 |
creator | Pasupureddy, Rahul Verma, Sonia Goyal, Bharti Pant, Akansha Sharma, Ruby Bhatt, Shruti Vashisht, Kapil Singh, Shailja Saxena, Ajay K. Dixit, Rajnikant Chakraborti, Soumyananda Pandey, Kailash C. |
description | Proteolytic activity constitutes a fundamental process essential for the survival of the malaria parasite and is thus highly regulated. Falstatin, a protease inhibitor of Plasmodium falciparum, tightly regulates the activity of cysteine hemoglobinases, falcipain-2 and 3 (FP2, FP3), by inhibiting FP2 through a single surface exposed loop. However, the multimeric nature of falstatin and its interaction with FP2 remained unexplored. Here we report that the N-terminal falstatin region is highly disordered, and needs chaperone activity (heat-shock protein 70, HSP70) for its folding. Protein-protein interaction assays showed a significant interaction between falstatin and HSP70. Further, characterization of the falstatin multimer through a series of biophysical techniques identified the formation of a falstatin decamer, which was extremely thermostable. Computational analysis of the falstatin decamer showed the presence of five falstatin dimers, with each dimer aligned in a head-to-tail orientation. Further, the falstatin C-terminal region was revealed to be primarily involved in the oligomerization process. Stoichiometric analysis of the FP2-falstatin multimer showed the formation of a heterooligomeric complex in a 1:1 ratio, with the participation of ten subunits of each protein. Taken together, our results report a novel protease-inhibitor complex and strengthens our understanding of the regulatory mechanisms of major plasmodium hemoglobinases.
•The N-terminal region of falstatin is Asn-rich and interacts with HSP70.•Falstatin forms a multimer of ten subunits and is stable.•The falstatin multimer interacts with FP2 to form an FP2-falstatin multimeric complex.•A decameric model of falstatin is proposed.•Rationale for falstatin oligomerization in regulating hemoglobinase activity |
doi_str_mv | 10.1016/j.ijbiomac.2024.130420 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2954772522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813024012236</els_id><sourcerecordid>3153551239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-9f128def6cf7d812cb774d2b315393cb9d777883b0d400e0e397c50aab93d7f03</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EotvCV6h85JJl_CexIy6gqkClSlzo2XLscetVYi92FsG3x6vdcu1pJM_vvRnPI-SawZYBGz7utnE3xbxYt-XA5ZYJkBxekQ3TauwAQLwmG2CSdbq1Lshlrbv2OvRMvyUXQssBBsk2JDwkj6WuNvmYHun6hNTlZT_jHxpyWewac6I50GDnBq0xfaI2UUw-P2LKh0rbBiUveUZ3mG2hMT3FKa65nEUu7m1M9R15c3TA9-d6RR6-3v68-d7d__h2d_PlvnNC6rUbA-PaYxhcUF4z7ialpOeTYL0YhZtGr5TSWkzgJQACilG5HqydRuFVAHFFPpx89yX_OmBdzRKrw3m2Cdu25mjU94w3t5dQPvZSKd5z3tDhhLav1lowmH2Jiy1_DQNzjMPszHMc5hiHOcXRhNfnGYdpQf9f9nz_Bnw-AdiO8jtiMdVFTA59LOhW43N8acY_HbWgCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2954772522</pqid></control><display><type>article</type><title>Understanding the complex formation of falstatin; an endogenous macromolecular inhibitor of falcipains</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Pasupureddy, Rahul ; Verma, Sonia ; Goyal, Bharti ; Pant, Akansha ; Sharma, Ruby ; Bhatt, Shruti ; Vashisht, Kapil ; Singh, Shailja ; Saxena, Ajay K. ; Dixit, Rajnikant ; Chakraborti, Soumyananda ; Pandey, Kailash C.</creator><creatorcontrib>Pasupureddy, Rahul ; Verma, Sonia ; Goyal, Bharti ; Pant, Akansha ; Sharma, Ruby ; Bhatt, Shruti ; Vashisht, Kapil ; Singh, Shailja ; Saxena, Ajay K. ; Dixit, Rajnikant ; Chakraborti, Soumyananda ; Pandey, Kailash C.</creatorcontrib><description>Proteolytic activity constitutes a fundamental process essential for the survival of the malaria parasite and is thus highly regulated. Falstatin, a protease inhibitor of Plasmodium falciparum, tightly regulates the activity of cysteine hemoglobinases, falcipain-2 and 3 (FP2, FP3), by inhibiting FP2 through a single surface exposed loop. However, the multimeric nature of falstatin and its interaction with FP2 remained unexplored. Here we report that the N-terminal falstatin region is highly disordered, and needs chaperone activity (heat-shock protein 70, HSP70) for its folding. Protein-protein interaction assays showed a significant interaction between falstatin and HSP70. Further, characterization of the falstatin multimer through a series of biophysical techniques identified the formation of a falstatin decamer, which was extremely thermostable. Computational analysis of the falstatin decamer showed the presence of five falstatin dimers, with each dimer aligned in a head-to-tail orientation. Further, the falstatin C-terminal region was revealed to be primarily involved in the oligomerization process. Stoichiometric analysis of the FP2-falstatin multimer showed the formation of a heterooligomeric complex in a 1:1 ratio, with the participation of ten subunits of each protein. Taken together, our results report a novel protease-inhibitor complex and strengthens our understanding of the regulatory mechanisms of major plasmodium hemoglobinases.
•The N-terminal region of falstatin is Asn-rich and interacts with HSP70.•Falstatin forms a multimer of ten subunits and is stable.•The falstatin multimer interacts with FP2 to form an FP2-falstatin multimeric complex.•A decameric model of falstatin is proposed.•Rationale for falstatin oligomerization in regulating hemoglobinase activity</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2024.130420</identifier><identifier>PMID: 38460641</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>cysteine ; Cysteine Endopeptidases ; Decameric model ; Falstatin oligomerization ; FP2-falstatin interaction ; Heat shock protein 70 ; Macromolecular inhibitor ; malaria ; oligomerization ; parasites ; Plasmodium falciparum ; Protease-inhibitor multimer complex ; Protein Folding ; protein-protein interactions ; proteinase inhibitors ; proteolysis ; stoichiometry ; thermal stability</subject><ispartof>International journal of biological macromolecules, 2024-04, Vol.265 (Pt 1), p.130420-130420, Article 130420</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-9f128def6cf7d812cb774d2b315393cb9d777883b0d400e0e397c50aab93d7f03</cites><orcidid>0000-0002-0652-1216 ; 0000-0001-5286-6605 ; 0000-0002-3536-8329 ; 0000-0003-3936-4357 ; 0000-0003-3560-0260 ; 0000-0002-7384-690X ; 0000-0002-8441-0415 ; 0000-0003-4502-2716 ; 0000-0001-8828-9096 ; 0000-0003-0550-0162 ; 0000-0002-6655-4220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijbiomac.2024.130420$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38460641$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pasupureddy, Rahul</creatorcontrib><creatorcontrib>Verma, Sonia</creatorcontrib><creatorcontrib>Goyal, Bharti</creatorcontrib><creatorcontrib>Pant, Akansha</creatorcontrib><creatorcontrib>Sharma, Ruby</creatorcontrib><creatorcontrib>Bhatt, Shruti</creatorcontrib><creatorcontrib>Vashisht, Kapil</creatorcontrib><creatorcontrib>Singh, Shailja</creatorcontrib><creatorcontrib>Saxena, Ajay K.</creatorcontrib><creatorcontrib>Dixit, Rajnikant</creatorcontrib><creatorcontrib>Chakraborti, Soumyananda</creatorcontrib><creatorcontrib>Pandey, Kailash C.</creatorcontrib><title>Understanding the complex formation of falstatin; an endogenous macromolecular inhibitor of falcipains</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>Proteolytic activity constitutes a fundamental process essential for the survival of the malaria parasite and is thus highly regulated. Falstatin, a protease inhibitor of Plasmodium falciparum, tightly regulates the activity of cysteine hemoglobinases, falcipain-2 and 3 (FP2, FP3), by inhibiting FP2 through a single surface exposed loop. However, the multimeric nature of falstatin and its interaction with FP2 remained unexplored. Here we report that the N-terminal falstatin region is highly disordered, and needs chaperone activity (heat-shock protein 70, HSP70) for its folding. Protein-protein interaction assays showed a significant interaction between falstatin and HSP70. Further, characterization of the falstatin multimer through a series of biophysical techniques identified the formation of a falstatin decamer, which was extremely thermostable. Computational analysis of the falstatin decamer showed the presence of five falstatin dimers, with each dimer aligned in a head-to-tail orientation. Further, the falstatin C-terminal region was revealed to be primarily involved in the oligomerization process. Stoichiometric analysis of the FP2-falstatin multimer showed the formation of a heterooligomeric complex in a 1:1 ratio, with the participation of ten subunits of each protein. Taken together, our results report a novel protease-inhibitor complex and strengthens our understanding of the regulatory mechanisms of major plasmodium hemoglobinases.
•The N-terminal region of falstatin is Asn-rich and interacts with HSP70.•Falstatin forms a multimer of ten subunits and is stable.•The falstatin multimer interacts with FP2 to form an FP2-falstatin multimeric complex.•A decameric model of falstatin is proposed.•Rationale for falstatin oligomerization in regulating hemoglobinase activity</description><subject>cysteine</subject><subject>Cysteine Endopeptidases</subject><subject>Decameric model</subject><subject>Falstatin oligomerization</subject><subject>FP2-falstatin interaction</subject><subject>Heat shock protein 70</subject><subject>Macromolecular inhibitor</subject><subject>malaria</subject><subject>oligomerization</subject><subject>parasites</subject><subject>Plasmodium falciparum</subject><subject>Protease-inhibitor multimer complex</subject><subject>Protein Folding</subject><subject>protein-protein interactions</subject><subject>proteinase inhibitors</subject><subject>proteolysis</subject><subject>stoichiometry</subject><subject>thermal stability</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS0EotvCV6h85JJl_CexIy6gqkClSlzo2XLscetVYi92FsG3x6vdcu1pJM_vvRnPI-SawZYBGz7utnE3xbxYt-XA5ZYJkBxekQ3TauwAQLwmG2CSdbq1Lshlrbv2OvRMvyUXQssBBsk2JDwkj6WuNvmYHun6hNTlZT_jHxpyWewac6I50GDnBq0xfaI2UUw-P2LKh0rbBiUveUZ3mG2hMT3FKa65nEUu7m1M9R15c3TA9-d6RR6-3v68-d7d__h2d_PlvnNC6rUbA-PaYxhcUF4z7ialpOeTYL0YhZtGr5TSWkzgJQACilG5HqydRuFVAHFFPpx89yX_OmBdzRKrw3m2Cdu25mjU94w3t5dQPvZSKd5z3tDhhLav1lowmH2Jiy1_DQNzjMPszHMc5hiHOcXRhNfnGYdpQf9f9nz_Bnw-AdiO8jtiMdVFTA59LOhW43N8acY_HbWgCw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Pasupureddy, Rahul</creator><creator>Verma, Sonia</creator><creator>Goyal, Bharti</creator><creator>Pant, Akansha</creator><creator>Sharma, Ruby</creator><creator>Bhatt, Shruti</creator><creator>Vashisht, Kapil</creator><creator>Singh, Shailja</creator><creator>Saxena, Ajay K.</creator><creator>Dixit, Rajnikant</creator><creator>Chakraborti, Soumyananda</creator><creator>Pandey, Kailash C.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-0652-1216</orcidid><orcidid>https://orcid.org/0000-0001-5286-6605</orcidid><orcidid>https://orcid.org/0000-0002-3536-8329</orcidid><orcidid>https://orcid.org/0000-0003-3936-4357</orcidid><orcidid>https://orcid.org/0000-0003-3560-0260</orcidid><orcidid>https://orcid.org/0000-0002-7384-690X</orcidid><orcidid>https://orcid.org/0000-0002-8441-0415</orcidid><orcidid>https://orcid.org/0000-0003-4502-2716</orcidid><orcidid>https://orcid.org/0000-0001-8828-9096</orcidid><orcidid>https://orcid.org/0000-0003-0550-0162</orcidid><orcidid>https://orcid.org/0000-0002-6655-4220</orcidid></search><sort><creationdate>20240401</creationdate><title>Understanding the complex formation of falstatin; an endogenous macromolecular inhibitor of falcipains</title><author>Pasupureddy, Rahul ; Verma, Sonia ; Goyal, Bharti ; Pant, Akansha ; Sharma, Ruby ; Bhatt, Shruti ; Vashisht, Kapil ; Singh, Shailja ; Saxena, Ajay K. ; Dixit, Rajnikant ; Chakraborti, Soumyananda ; Pandey, Kailash C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-9f128def6cf7d812cb774d2b315393cb9d777883b0d400e0e397c50aab93d7f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>cysteine</topic><topic>Cysteine Endopeptidases</topic><topic>Decameric model</topic><topic>Falstatin oligomerization</topic><topic>FP2-falstatin interaction</topic><topic>Heat shock protein 70</topic><topic>Macromolecular inhibitor</topic><topic>malaria</topic><topic>oligomerization</topic><topic>parasites</topic><topic>Plasmodium falciparum</topic><topic>Protease-inhibitor multimer complex</topic><topic>Protein Folding</topic><topic>protein-protein interactions</topic><topic>proteinase inhibitors</topic><topic>proteolysis</topic><topic>stoichiometry</topic><topic>thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pasupureddy, Rahul</creatorcontrib><creatorcontrib>Verma, Sonia</creatorcontrib><creatorcontrib>Goyal, Bharti</creatorcontrib><creatorcontrib>Pant, Akansha</creatorcontrib><creatorcontrib>Sharma, Ruby</creatorcontrib><creatorcontrib>Bhatt, Shruti</creatorcontrib><creatorcontrib>Vashisht, Kapil</creatorcontrib><creatorcontrib>Singh, Shailja</creatorcontrib><creatorcontrib>Saxena, Ajay K.</creatorcontrib><creatorcontrib>Dixit, Rajnikant</creatorcontrib><creatorcontrib>Chakraborti, Soumyananda</creatorcontrib><creatorcontrib>Pandey, Kailash C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pasupureddy, Rahul</au><au>Verma, Sonia</au><au>Goyal, Bharti</au><au>Pant, Akansha</au><au>Sharma, Ruby</au><au>Bhatt, Shruti</au><au>Vashisht, Kapil</au><au>Singh, Shailja</au><au>Saxena, Ajay K.</au><au>Dixit, Rajnikant</au><au>Chakraborti, Soumyananda</au><au>Pandey, Kailash C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the complex formation of falstatin; an endogenous macromolecular inhibitor of falcipains</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>265</volume><issue>Pt 1</issue><spage>130420</spage><epage>130420</epage><pages>130420-130420</pages><artnum>130420</artnum><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>Proteolytic activity constitutes a fundamental process essential for the survival of the malaria parasite and is thus highly regulated. Falstatin, a protease inhibitor of Plasmodium falciparum, tightly regulates the activity of cysteine hemoglobinases, falcipain-2 and 3 (FP2, FP3), by inhibiting FP2 through a single surface exposed loop. However, the multimeric nature of falstatin and its interaction with FP2 remained unexplored. Here we report that the N-terminal falstatin region is highly disordered, and needs chaperone activity (heat-shock protein 70, HSP70) for its folding. Protein-protein interaction assays showed a significant interaction between falstatin and HSP70. Further, characterization of the falstatin multimer through a series of biophysical techniques identified the formation of a falstatin decamer, which was extremely thermostable. Computational analysis of the falstatin decamer showed the presence of five falstatin dimers, with each dimer aligned in a head-to-tail orientation. Further, the falstatin C-terminal region was revealed to be primarily involved in the oligomerization process. Stoichiometric analysis of the FP2-falstatin multimer showed the formation of a heterooligomeric complex in a 1:1 ratio, with the participation of ten subunits of each protein. Taken together, our results report a novel protease-inhibitor complex and strengthens our understanding of the regulatory mechanisms of major plasmodium hemoglobinases.
•The N-terminal region of falstatin is Asn-rich and interacts with HSP70.•Falstatin forms a multimer of ten subunits and is stable.•The falstatin multimer interacts with FP2 to form an FP2-falstatin multimeric complex.•A decameric model of falstatin is proposed.•Rationale for falstatin oligomerization in regulating hemoglobinase activity</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38460641</pmid><doi>10.1016/j.ijbiomac.2024.130420</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0652-1216</orcidid><orcidid>https://orcid.org/0000-0001-5286-6605</orcidid><orcidid>https://orcid.org/0000-0002-3536-8329</orcidid><orcidid>https://orcid.org/0000-0003-3936-4357</orcidid><orcidid>https://orcid.org/0000-0003-3560-0260</orcidid><orcidid>https://orcid.org/0000-0002-7384-690X</orcidid><orcidid>https://orcid.org/0000-0002-8441-0415</orcidid><orcidid>https://orcid.org/0000-0003-4502-2716</orcidid><orcidid>https://orcid.org/0000-0001-8828-9096</orcidid><orcidid>https://orcid.org/0000-0003-0550-0162</orcidid><orcidid>https://orcid.org/0000-0002-6655-4220</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-8130 |
ispartof | International journal of biological macromolecules, 2024-04, Vol.265 (Pt 1), p.130420-130420, Article 130420 |
issn | 0141-8130 1879-0003 |
language | eng |
recordid | cdi_proquest_miscellaneous_2954772522 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | cysteine Cysteine Endopeptidases Decameric model Falstatin oligomerization FP2-falstatin interaction Heat shock protein 70 Macromolecular inhibitor malaria oligomerization parasites Plasmodium falciparum Protease-inhibitor multimer complex Protein Folding protein-protein interactions proteinase inhibitors proteolysis stoichiometry thermal stability |
title | Understanding the complex formation of falstatin; an endogenous macromolecular inhibitor of falcipains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20complex%20formation%20of%20falstatin;%20an%20endogenous%20macromolecular%20inhibitor%20of%20falcipains&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Pasupureddy,%20Rahul&rft.date=2024-04-01&rft.volume=265&rft.issue=Pt%201&rft.spage=130420&rft.epage=130420&rft.pages=130420-130420&rft.artnum=130420&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2024.130420&rft_dat=%3Cproquest_cross%3E3153551239%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2954772522&rft_id=info:pmid/38460641&rft_els_id=S0141813024012236&rfr_iscdi=true |