Understanding the complex formation of falstatin; an endogenous macromolecular inhibitor of falcipains

Proteolytic activity constitutes a fundamental process essential for the survival of the malaria parasite and is thus highly regulated. Falstatin, a protease inhibitor of Plasmodium falciparum, tightly regulates the activity of cysteine hemoglobinases, falcipain-2 and 3 (FP2, FP3), by inhibiting FP2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-04, Vol.265 (Pt 1), p.130420-130420, Article 130420
Hauptverfasser: Pasupureddy, Rahul, Verma, Sonia, Goyal, Bharti, Pant, Akansha, Sharma, Ruby, Bhatt, Shruti, Vashisht, Kapil, Singh, Shailja, Saxena, Ajay K., Dixit, Rajnikant, Chakraborti, Soumyananda, Pandey, Kailash C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 130420
container_issue Pt 1
container_start_page 130420
container_title International journal of biological macromolecules
container_volume 265
creator Pasupureddy, Rahul
Verma, Sonia
Goyal, Bharti
Pant, Akansha
Sharma, Ruby
Bhatt, Shruti
Vashisht, Kapil
Singh, Shailja
Saxena, Ajay K.
Dixit, Rajnikant
Chakraborti, Soumyananda
Pandey, Kailash C.
description Proteolytic activity constitutes a fundamental process essential for the survival of the malaria parasite and is thus highly regulated. Falstatin, a protease inhibitor of Plasmodium falciparum, tightly regulates the activity of cysteine hemoglobinases, falcipain-2 and 3 (FP2, FP3), by inhibiting FP2 through a single surface exposed loop. However, the multimeric nature of falstatin and its interaction with FP2 remained unexplored. Here we report that the N-terminal falstatin region is highly disordered, and needs chaperone activity (heat-shock protein 70, HSP70) for its folding. Protein-protein interaction assays showed a significant interaction between falstatin and HSP70. Further, characterization of the falstatin multimer through a series of biophysical techniques identified the formation of a falstatin decamer, which was extremely thermostable. Computational analysis of the falstatin decamer showed the presence of five falstatin dimers, with each dimer aligned in a head-to-tail orientation. Further, the falstatin C-terminal region was revealed to be primarily involved in the oligomerization process. Stoichiometric analysis of the FP2-falstatin multimer showed the formation of a heterooligomeric complex in a 1:1 ratio, with the participation of ten subunits of each protein. Taken together, our results report a novel protease-inhibitor complex and strengthens our understanding of the regulatory mechanisms of major plasmodium hemoglobinases. •The N-terminal region of falstatin is Asn-rich and interacts with HSP70.•Falstatin forms a multimer of ten subunits and is stable.•The falstatin multimer interacts with FP2 to form an FP2-falstatin multimeric complex.•A decameric model of falstatin is proposed.•Rationale for falstatin oligomerization in regulating hemoglobinase activity
doi_str_mv 10.1016/j.ijbiomac.2024.130420
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2954772522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813024012236</els_id><sourcerecordid>3153551239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-9f128def6cf7d812cb774d2b315393cb9d777883b0d400e0e397c50aab93d7f03</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EotvCV6h85JJl_CexIy6gqkClSlzo2XLscetVYi92FsG3x6vdcu1pJM_vvRnPI-SawZYBGz7utnE3xbxYt-XA5ZYJkBxekQ3TauwAQLwmG2CSdbq1Lshlrbv2OvRMvyUXQssBBsk2JDwkj6WuNvmYHun6hNTlZT_jHxpyWewac6I50GDnBq0xfaI2UUw-P2LKh0rbBiUveUZ3mG2hMT3FKa65nEUu7m1M9R15c3TA9-d6RR6-3v68-d7d__h2d_PlvnNC6rUbA-PaYxhcUF4z7ialpOeTYL0YhZtGr5TSWkzgJQACilG5HqydRuFVAHFFPpx89yX_OmBdzRKrw3m2Cdu25mjU94w3t5dQPvZSKd5z3tDhhLav1lowmH2Jiy1_DQNzjMPszHMc5hiHOcXRhNfnGYdpQf9f9nz_Bnw-AdiO8jtiMdVFTA59LOhW43N8acY_HbWgCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2954772522</pqid></control><display><type>article</type><title>Understanding the complex formation of falstatin; an endogenous macromolecular inhibitor of falcipains</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Pasupureddy, Rahul ; Verma, Sonia ; Goyal, Bharti ; Pant, Akansha ; Sharma, Ruby ; Bhatt, Shruti ; Vashisht, Kapil ; Singh, Shailja ; Saxena, Ajay K. ; Dixit, Rajnikant ; Chakraborti, Soumyananda ; Pandey, Kailash C.</creator><creatorcontrib>Pasupureddy, Rahul ; Verma, Sonia ; Goyal, Bharti ; Pant, Akansha ; Sharma, Ruby ; Bhatt, Shruti ; Vashisht, Kapil ; Singh, Shailja ; Saxena, Ajay K. ; Dixit, Rajnikant ; Chakraborti, Soumyananda ; Pandey, Kailash C.</creatorcontrib><description>Proteolytic activity constitutes a fundamental process essential for the survival of the malaria parasite and is thus highly regulated. Falstatin, a protease inhibitor of Plasmodium falciparum, tightly regulates the activity of cysteine hemoglobinases, falcipain-2 and 3 (FP2, FP3), by inhibiting FP2 through a single surface exposed loop. However, the multimeric nature of falstatin and its interaction with FP2 remained unexplored. Here we report that the N-terminal falstatin region is highly disordered, and needs chaperone activity (heat-shock protein 70, HSP70) for its folding. Protein-protein interaction assays showed a significant interaction between falstatin and HSP70. Further, characterization of the falstatin multimer through a series of biophysical techniques identified the formation of a falstatin decamer, which was extremely thermostable. Computational analysis of the falstatin decamer showed the presence of five falstatin dimers, with each dimer aligned in a head-to-tail orientation. Further, the falstatin C-terminal region was revealed to be primarily involved in the oligomerization process. Stoichiometric analysis of the FP2-falstatin multimer showed the formation of a heterooligomeric complex in a 1:1 ratio, with the participation of ten subunits of each protein. Taken together, our results report a novel protease-inhibitor complex and strengthens our understanding of the regulatory mechanisms of major plasmodium hemoglobinases. •The N-terminal region of falstatin is Asn-rich and interacts with HSP70.•Falstatin forms a multimer of ten subunits and is stable.•The falstatin multimer interacts with FP2 to form an FP2-falstatin multimeric complex.•A decameric model of falstatin is proposed.•Rationale for falstatin oligomerization in regulating hemoglobinase activity</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2024.130420</identifier><identifier>PMID: 38460641</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>cysteine ; Cysteine Endopeptidases ; Decameric model ; Falstatin oligomerization ; FP2-falstatin interaction ; Heat shock protein 70 ; Macromolecular inhibitor ; malaria ; oligomerization ; parasites ; Plasmodium falciparum ; Protease-inhibitor multimer complex ; Protein Folding ; protein-protein interactions ; proteinase inhibitors ; proteolysis ; stoichiometry ; thermal stability</subject><ispartof>International journal of biological macromolecules, 2024-04, Vol.265 (Pt 1), p.130420-130420, Article 130420</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-9f128def6cf7d812cb774d2b315393cb9d777883b0d400e0e397c50aab93d7f03</cites><orcidid>0000-0002-0652-1216 ; 0000-0001-5286-6605 ; 0000-0002-3536-8329 ; 0000-0003-3936-4357 ; 0000-0003-3560-0260 ; 0000-0002-7384-690X ; 0000-0002-8441-0415 ; 0000-0003-4502-2716 ; 0000-0001-8828-9096 ; 0000-0003-0550-0162 ; 0000-0002-6655-4220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijbiomac.2024.130420$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38460641$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pasupureddy, Rahul</creatorcontrib><creatorcontrib>Verma, Sonia</creatorcontrib><creatorcontrib>Goyal, Bharti</creatorcontrib><creatorcontrib>Pant, Akansha</creatorcontrib><creatorcontrib>Sharma, Ruby</creatorcontrib><creatorcontrib>Bhatt, Shruti</creatorcontrib><creatorcontrib>Vashisht, Kapil</creatorcontrib><creatorcontrib>Singh, Shailja</creatorcontrib><creatorcontrib>Saxena, Ajay K.</creatorcontrib><creatorcontrib>Dixit, Rajnikant</creatorcontrib><creatorcontrib>Chakraborti, Soumyananda</creatorcontrib><creatorcontrib>Pandey, Kailash C.</creatorcontrib><title>Understanding the complex formation of falstatin; an endogenous macromolecular inhibitor of falcipains</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>Proteolytic activity constitutes a fundamental process essential for the survival of the malaria parasite and is thus highly regulated. Falstatin, a protease inhibitor of Plasmodium falciparum, tightly regulates the activity of cysteine hemoglobinases, falcipain-2 and 3 (FP2, FP3), by inhibiting FP2 through a single surface exposed loop. However, the multimeric nature of falstatin and its interaction with FP2 remained unexplored. Here we report that the N-terminal falstatin region is highly disordered, and needs chaperone activity (heat-shock protein 70, HSP70) for its folding. Protein-protein interaction assays showed a significant interaction between falstatin and HSP70. Further, characterization of the falstatin multimer through a series of biophysical techniques identified the formation of a falstatin decamer, which was extremely thermostable. Computational analysis of the falstatin decamer showed the presence of five falstatin dimers, with each dimer aligned in a head-to-tail orientation. Further, the falstatin C-terminal region was revealed to be primarily involved in the oligomerization process. Stoichiometric analysis of the FP2-falstatin multimer showed the formation of a heterooligomeric complex in a 1:1 ratio, with the participation of ten subunits of each protein. Taken together, our results report a novel protease-inhibitor complex and strengthens our understanding of the regulatory mechanisms of major plasmodium hemoglobinases. •The N-terminal region of falstatin is Asn-rich and interacts with HSP70.•Falstatin forms a multimer of ten subunits and is stable.•The falstatin multimer interacts with FP2 to form an FP2-falstatin multimeric complex.•A decameric model of falstatin is proposed.•Rationale for falstatin oligomerization in regulating hemoglobinase activity</description><subject>cysteine</subject><subject>Cysteine Endopeptidases</subject><subject>Decameric model</subject><subject>Falstatin oligomerization</subject><subject>FP2-falstatin interaction</subject><subject>Heat shock protein 70</subject><subject>Macromolecular inhibitor</subject><subject>malaria</subject><subject>oligomerization</subject><subject>parasites</subject><subject>Plasmodium falciparum</subject><subject>Protease-inhibitor multimer complex</subject><subject>Protein Folding</subject><subject>protein-protein interactions</subject><subject>proteinase inhibitors</subject><subject>proteolysis</subject><subject>stoichiometry</subject><subject>thermal stability</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS0EotvCV6h85JJl_CexIy6gqkClSlzo2XLscetVYi92FsG3x6vdcu1pJM_vvRnPI-SawZYBGz7utnE3xbxYt-XA5ZYJkBxekQ3TauwAQLwmG2CSdbq1Lshlrbv2OvRMvyUXQssBBsk2JDwkj6WuNvmYHun6hNTlZT_jHxpyWewac6I50GDnBq0xfaI2UUw-P2LKh0rbBiUveUZ3mG2hMT3FKa65nEUu7m1M9R15c3TA9-d6RR6-3v68-d7d__h2d_PlvnNC6rUbA-PaYxhcUF4z7ialpOeTYL0YhZtGr5TSWkzgJQACilG5HqydRuFVAHFFPpx89yX_OmBdzRKrw3m2Cdu25mjU94w3t5dQPvZSKd5z3tDhhLav1lowmH2Jiy1_DQNzjMPszHMc5hiHOcXRhNfnGYdpQf9f9nz_Bnw-AdiO8jtiMdVFTA59LOhW43N8acY_HbWgCw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Pasupureddy, Rahul</creator><creator>Verma, Sonia</creator><creator>Goyal, Bharti</creator><creator>Pant, Akansha</creator><creator>Sharma, Ruby</creator><creator>Bhatt, Shruti</creator><creator>Vashisht, Kapil</creator><creator>Singh, Shailja</creator><creator>Saxena, Ajay K.</creator><creator>Dixit, Rajnikant</creator><creator>Chakraborti, Soumyananda</creator><creator>Pandey, Kailash C.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-0652-1216</orcidid><orcidid>https://orcid.org/0000-0001-5286-6605</orcidid><orcidid>https://orcid.org/0000-0002-3536-8329</orcidid><orcidid>https://orcid.org/0000-0003-3936-4357</orcidid><orcidid>https://orcid.org/0000-0003-3560-0260</orcidid><orcidid>https://orcid.org/0000-0002-7384-690X</orcidid><orcidid>https://orcid.org/0000-0002-8441-0415</orcidid><orcidid>https://orcid.org/0000-0003-4502-2716</orcidid><orcidid>https://orcid.org/0000-0001-8828-9096</orcidid><orcidid>https://orcid.org/0000-0003-0550-0162</orcidid><orcidid>https://orcid.org/0000-0002-6655-4220</orcidid></search><sort><creationdate>20240401</creationdate><title>Understanding the complex formation of falstatin; an endogenous macromolecular inhibitor of falcipains</title><author>Pasupureddy, Rahul ; Verma, Sonia ; Goyal, Bharti ; Pant, Akansha ; Sharma, Ruby ; Bhatt, Shruti ; Vashisht, Kapil ; Singh, Shailja ; Saxena, Ajay K. ; Dixit, Rajnikant ; Chakraborti, Soumyananda ; Pandey, Kailash C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-9f128def6cf7d812cb774d2b315393cb9d777883b0d400e0e397c50aab93d7f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>cysteine</topic><topic>Cysteine Endopeptidases</topic><topic>Decameric model</topic><topic>Falstatin oligomerization</topic><topic>FP2-falstatin interaction</topic><topic>Heat shock protein 70</topic><topic>Macromolecular inhibitor</topic><topic>malaria</topic><topic>oligomerization</topic><topic>parasites</topic><topic>Plasmodium falciparum</topic><topic>Protease-inhibitor multimer complex</topic><topic>Protein Folding</topic><topic>protein-protein interactions</topic><topic>proteinase inhibitors</topic><topic>proteolysis</topic><topic>stoichiometry</topic><topic>thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pasupureddy, Rahul</creatorcontrib><creatorcontrib>Verma, Sonia</creatorcontrib><creatorcontrib>Goyal, Bharti</creatorcontrib><creatorcontrib>Pant, Akansha</creatorcontrib><creatorcontrib>Sharma, Ruby</creatorcontrib><creatorcontrib>Bhatt, Shruti</creatorcontrib><creatorcontrib>Vashisht, Kapil</creatorcontrib><creatorcontrib>Singh, Shailja</creatorcontrib><creatorcontrib>Saxena, Ajay K.</creatorcontrib><creatorcontrib>Dixit, Rajnikant</creatorcontrib><creatorcontrib>Chakraborti, Soumyananda</creatorcontrib><creatorcontrib>Pandey, Kailash C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pasupureddy, Rahul</au><au>Verma, Sonia</au><au>Goyal, Bharti</au><au>Pant, Akansha</au><au>Sharma, Ruby</au><au>Bhatt, Shruti</au><au>Vashisht, Kapil</au><au>Singh, Shailja</au><au>Saxena, Ajay K.</au><au>Dixit, Rajnikant</au><au>Chakraborti, Soumyananda</au><au>Pandey, Kailash C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the complex formation of falstatin; an endogenous macromolecular inhibitor of falcipains</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>265</volume><issue>Pt 1</issue><spage>130420</spage><epage>130420</epage><pages>130420-130420</pages><artnum>130420</artnum><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>Proteolytic activity constitutes a fundamental process essential for the survival of the malaria parasite and is thus highly regulated. Falstatin, a protease inhibitor of Plasmodium falciparum, tightly regulates the activity of cysteine hemoglobinases, falcipain-2 and 3 (FP2, FP3), by inhibiting FP2 through a single surface exposed loop. However, the multimeric nature of falstatin and its interaction with FP2 remained unexplored. Here we report that the N-terminal falstatin region is highly disordered, and needs chaperone activity (heat-shock protein 70, HSP70) for its folding. Protein-protein interaction assays showed a significant interaction between falstatin and HSP70. Further, characterization of the falstatin multimer through a series of biophysical techniques identified the formation of a falstatin decamer, which was extremely thermostable. Computational analysis of the falstatin decamer showed the presence of five falstatin dimers, with each dimer aligned in a head-to-tail orientation. Further, the falstatin C-terminal region was revealed to be primarily involved in the oligomerization process. Stoichiometric analysis of the FP2-falstatin multimer showed the formation of a heterooligomeric complex in a 1:1 ratio, with the participation of ten subunits of each protein. Taken together, our results report a novel protease-inhibitor complex and strengthens our understanding of the regulatory mechanisms of major plasmodium hemoglobinases. •The N-terminal region of falstatin is Asn-rich and interacts with HSP70.•Falstatin forms a multimer of ten subunits and is stable.•The falstatin multimer interacts with FP2 to form an FP2-falstatin multimeric complex.•A decameric model of falstatin is proposed.•Rationale for falstatin oligomerization in regulating hemoglobinase activity</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38460641</pmid><doi>10.1016/j.ijbiomac.2024.130420</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0652-1216</orcidid><orcidid>https://orcid.org/0000-0001-5286-6605</orcidid><orcidid>https://orcid.org/0000-0002-3536-8329</orcidid><orcidid>https://orcid.org/0000-0003-3936-4357</orcidid><orcidid>https://orcid.org/0000-0003-3560-0260</orcidid><orcidid>https://orcid.org/0000-0002-7384-690X</orcidid><orcidid>https://orcid.org/0000-0002-8441-0415</orcidid><orcidid>https://orcid.org/0000-0003-4502-2716</orcidid><orcidid>https://orcid.org/0000-0001-8828-9096</orcidid><orcidid>https://orcid.org/0000-0003-0550-0162</orcidid><orcidid>https://orcid.org/0000-0002-6655-4220</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0141-8130
ispartof International journal of biological macromolecules, 2024-04, Vol.265 (Pt 1), p.130420-130420, Article 130420
issn 0141-8130
1879-0003
language eng
recordid cdi_proquest_miscellaneous_2954772522
source MEDLINE; Elsevier ScienceDirect Journals
subjects cysteine
Cysteine Endopeptidases
Decameric model
Falstatin oligomerization
FP2-falstatin interaction
Heat shock protein 70
Macromolecular inhibitor
malaria
oligomerization
parasites
Plasmodium falciparum
Protease-inhibitor multimer complex
Protein Folding
protein-protein interactions
proteinase inhibitors
proteolysis
stoichiometry
thermal stability
title Understanding the complex formation of falstatin; an endogenous macromolecular inhibitor of falcipains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20complex%20formation%20of%20falstatin;%20an%20endogenous%20macromolecular%20inhibitor%20of%20falcipains&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Pasupureddy,%20Rahul&rft.date=2024-04-01&rft.volume=265&rft.issue=Pt%201&rft.spage=130420&rft.epage=130420&rft.pages=130420-130420&rft.artnum=130420&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2024.130420&rft_dat=%3Cproquest_cross%3E3153551239%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2954772522&rft_id=info:pmid/38460641&rft_els_id=S0141813024012236&rfr_iscdi=true