Functional domains of a ribosome arresting peptide are affected by surrounding nonconserved residues

Expression of the Escherichia coli tnaCAB operon, responsible for L-tryptophan (L-Trp) transport and catabolism, is regulated by L-Trp–directed translation arrest and the ribosome arresting peptide TnaC. The function of TnaC relies on conserved residues distributed throughout the peptide, which are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2024-03, Vol.300 (3), p.105780-105780, Article 105780
Hauptverfasser: Judd, Heather N.G., Martínez, Allyson K., Klepacki, Dorota, Vázquez-Laslop, Nora, Sachs, Matthew S., Cruz-Vera, Luis R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105780
container_issue 3
container_start_page 105780
container_title The Journal of biological chemistry
container_volume 300
creator Judd, Heather N.G.
Martínez, Allyson K.
Klepacki, Dorota
Vázquez-Laslop, Nora
Sachs, Matthew S.
Cruz-Vera, Luis R.
description Expression of the Escherichia coli tnaCAB operon, responsible for L-tryptophan (L-Trp) transport and catabolism, is regulated by L-Trp–directed translation arrest and the ribosome arresting peptide TnaC. The function of TnaC relies on conserved residues distributed throughout the peptide, which are involved in forming an L-Trp binding site at the ribosome exit tunnel and inhibiting the ribosome function. We aimed to understand whether nonconserved amino acids surrounding these critical conserved residues play a functional role in TnaC-mediated ribosome arrest. We have isolated two intragenic suppressor mutations that restore arrest function of TnaC mutants; one of these mutations is located near the L-Trp binding site, while the other mutation is located near the ribosome active site. We used reporter gene fusions to show that both suppressor mutations have similar effects on TnaC mutants at the conserved residues involved in forming a free L-Trp binding site. However, they diverge in suppressing loss-of-function mutations in a conserved TnaC residue at the ribosome active site. With ribosome toeprinting assays, we determined that both suppressor mutations generate TnaC peptides, which are highly sensitive to L-Trp. Puromycin-challenge assays with isolated arrested ribosomes indicate that both TnaC suppressor mutants are resistant to peptidyl-tRNA cleavage by puromycin in the presence of L-Trp; however, they differ in their resistance to puromycin in the absence of L-Trp. We propose that the TnaC peptide two functionally distinct segments, a sensor domain and a stalling domain, and that the functional versatility of these domains is fine-tuned by the nature of their surrounding nonconserved residues.
doi_str_mv 10.1016/j.jbc.2024.105780
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2954771190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192582400156X</els_id><sourcerecordid>2954771190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-87654dc223716ea23fe8326f053fae329ad752ca2d67b577727c9c3b0b0d99253</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMotlY_gBfZo5et-dNsNngSsSoUvCh4C9lkVlK6SU12C_32pmz1aGAIk3nvhfkhdE3wnGBS3a3n68bMKaaL3HNR4xM0JbhmJePk8xRNMaaklJTXE3SR0hrns5DkHE1YzSRnBE-RXQ7e9C54vSls6LTzqQhtoYvompBCB4WOEVLv_FexhW3v7OElV9uC6cEWzb5IQ4xh8Pag8cGb4BPEXZ5lo7MDpEt01upNgqvjPUMfy6f3x5dy9fb8-viwKg2TVV_WouILayhlglSgKWuhZrRqMWetBkaltoJTo6mtRMOFEFQYaViDG2xlXpPN0O2Yu43hO__bq84lA5uN9hCGpKjkCyEIkThLySg1MaQUoVXb6Dod94pgdYCr1irDVQe4aoSbPTfH-KHpwP45fmlmwf0ogLzkzkFUyTjwBqyLmZaywf0T_wPAjorw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2954771190</pqid></control><display><type>article</type><title>Functional domains of a ribosome arresting peptide are affected by surrounding nonconserved residues</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Judd, Heather N.G. ; Martínez, Allyson K. ; Klepacki, Dorota ; Vázquez-Laslop, Nora ; Sachs, Matthew S. ; Cruz-Vera, Luis R.</creator><creatorcontrib>Judd, Heather N.G. ; Martínez, Allyson K. ; Klepacki, Dorota ; Vázquez-Laslop, Nora ; Sachs, Matthew S. ; Cruz-Vera, Luis R.</creatorcontrib><description>Expression of the Escherichia coli tnaCAB operon, responsible for L-tryptophan (L-Trp) transport and catabolism, is regulated by L-Trp–directed translation arrest and the ribosome arresting peptide TnaC. The function of TnaC relies on conserved residues distributed throughout the peptide, which are involved in forming an L-Trp binding site at the ribosome exit tunnel and inhibiting the ribosome function. We aimed to understand whether nonconserved amino acids surrounding these critical conserved residues play a functional role in TnaC-mediated ribosome arrest. We have isolated two intragenic suppressor mutations that restore arrest function of TnaC mutants; one of these mutations is located near the L-Trp binding site, while the other mutation is located near the ribosome active site. We used reporter gene fusions to show that both suppressor mutations have similar effects on TnaC mutants at the conserved residues involved in forming a free L-Trp binding site. However, they diverge in suppressing loss-of-function mutations in a conserved TnaC residue at the ribosome active site. With ribosome toeprinting assays, we determined that both suppressor mutations generate TnaC peptides, which are highly sensitive to L-Trp. Puromycin-challenge assays with isolated arrested ribosomes indicate that both TnaC suppressor mutants are resistant to peptidyl-tRNA cleavage by puromycin in the presence of L-Trp; however, they differ in their resistance to puromycin in the absence of L-Trp. We propose that the TnaC peptide two functionally distinct segments, a sensor domain and a stalling domain, and that the functional versatility of these domains is fine-tuned by the nature of their surrounding nonconserved residues.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2024.105780</identifier><identifier>PMID: 38395310</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>arrested ribosomes ; L-Trp ; peptidyl transferase center ; ribosomal exit tunnel ; ribosome arresting peptide ; tnaC</subject><ispartof>The Journal of biological chemistry, 2024-03, Vol.300 (3), p.105780-105780, Article 105780</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-87654dc223716ea23fe8326f053fae329ad752ca2d67b577727c9c3b0b0d99253</citedby><cites>FETCH-LOGICAL-c396t-87654dc223716ea23fe8326f053fae329ad752ca2d67b577727c9c3b0b0d99253</cites><orcidid>0000-0003-2256-693X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38395310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Judd, Heather N.G.</creatorcontrib><creatorcontrib>Martínez, Allyson K.</creatorcontrib><creatorcontrib>Klepacki, Dorota</creatorcontrib><creatorcontrib>Vázquez-Laslop, Nora</creatorcontrib><creatorcontrib>Sachs, Matthew S.</creatorcontrib><creatorcontrib>Cruz-Vera, Luis R.</creatorcontrib><title>Functional domains of a ribosome arresting peptide are affected by surrounding nonconserved residues</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Expression of the Escherichia coli tnaCAB operon, responsible for L-tryptophan (L-Trp) transport and catabolism, is regulated by L-Trp–directed translation arrest and the ribosome arresting peptide TnaC. The function of TnaC relies on conserved residues distributed throughout the peptide, which are involved in forming an L-Trp binding site at the ribosome exit tunnel and inhibiting the ribosome function. We aimed to understand whether nonconserved amino acids surrounding these critical conserved residues play a functional role in TnaC-mediated ribosome arrest. We have isolated two intragenic suppressor mutations that restore arrest function of TnaC mutants; one of these mutations is located near the L-Trp binding site, while the other mutation is located near the ribosome active site. We used reporter gene fusions to show that both suppressor mutations have similar effects on TnaC mutants at the conserved residues involved in forming a free L-Trp binding site. However, they diverge in suppressing loss-of-function mutations in a conserved TnaC residue at the ribosome active site. With ribosome toeprinting assays, we determined that both suppressor mutations generate TnaC peptides, which are highly sensitive to L-Trp. Puromycin-challenge assays with isolated arrested ribosomes indicate that both TnaC suppressor mutants are resistant to peptidyl-tRNA cleavage by puromycin in the presence of L-Trp; however, they differ in their resistance to puromycin in the absence of L-Trp. We propose that the TnaC peptide two functionally distinct segments, a sensor domain and a stalling domain, and that the functional versatility of these domains is fine-tuned by the nature of their surrounding nonconserved residues.</description><subject>arrested ribosomes</subject><subject>L-Trp</subject><subject>peptidyl transferase center</subject><subject>ribosomal exit tunnel</subject><subject>ribosome arresting peptide</subject><subject>tnaC</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMotlY_gBfZo5et-dNsNngSsSoUvCh4C9lkVlK6SU12C_32pmz1aGAIk3nvhfkhdE3wnGBS3a3n68bMKaaL3HNR4xM0JbhmJePk8xRNMaaklJTXE3SR0hrns5DkHE1YzSRnBE-RXQ7e9C54vSls6LTzqQhtoYvompBCB4WOEVLv_FexhW3v7OElV9uC6cEWzb5IQ4xh8Pag8cGb4BPEXZ5lo7MDpEt01upNgqvjPUMfy6f3x5dy9fb8-viwKg2TVV_WouILayhlglSgKWuhZrRqMWetBkaltoJTo6mtRMOFEFQYaViDG2xlXpPN0O2Yu43hO__bq84lA5uN9hCGpKjkCyEIkThLySg1MaQUoVXb6Dod94pgdYCr1irDVQe4aoSbPTfH-KHpwP45fmlmwf0ogLzkzkFUyTjwBqyLmZaywf0T_wPAjorw</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Judd, Heather N.G.</creator><creator>Martínez, Allyson K.</creator><creator>Klepacki, Dorota</creator><creator>Vázquez-Laslop, Nora</creator><creator>Sachs, Matthew S.</creator><creator>Cruz-Vera, Luis R.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2256-693X</orcidid></search><sort><creationdate>202403</creationdate><title>Functional domains of a ribosome arresting peptide are affected by surrounding nonconserved residues</title><author>Judd, Heather N.G. ; Martínez, Allyson K. ; Klepacki, Dorota ; Vázquez-Laslop, Nora ; Sachs, Matthew S. ; Cruz-Vera, Luis R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-87654dc223716ea23fe8326f053fae329ad752ca2d67b577727c9c3b0b0d99253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>arrested ribosomes</topic><topic>L-Trp</topic><topic>peptidyl transferase center</topic><topic>ribosomal exit tunnel</topic><topic>ribosome arresting peptide</topic><topic>tnaC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Judd, Heather N.G.</creatorcontrib><creatorcontrib>Martínez, Allyson K.</creatorcontrib><creatorcontrib>Klepacki, Dorota</creatorcontrib><creatorcontrib>Vázquez-Laslop, Nora</creatorcontrib><creatorcontrib>Sachs, Matthew S.</creatorcontrib><creatorcontrib>Cruz-Vera, Luis R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Judd, Heather N.G.</au><au>Martínez, Allyson K.</au><au>Klepacki, Dorota</au><au>Vázquez-Laslop, Nora</au><au>Sachs, Matthew S.</au><au>Cruz-Vera, Luis R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional domains of a ribosome arresting peptide are affected by surrounding nonconserved residues</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2024-03</date><risdate>2024</risdate><volume>300</volume><issue>3</issue><spage>105780</spage><epage>105780</epage><pages>105780-105780</pages><artnum>105780</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Expression of the Escherichia coli tnaCAB operon, responsible for L-tryptophan (L-Trp) transport and catabolism, is regulated by L-Trp–directed translation arrest and the ribosome arresting peptide TnaC. The function of TnaC relies on conserved residues distributed throughout the peptide, which are involved in forming an L-Trp binding site at the ribosome exit tunnel and inhibiting the ribosome function. We aimed to understand whether nonconserved amino acids surrounding these critical conserved residues play a functional role in TnaC-mediated ribosome arrest. We have isolated two intragenic suppressor mutations that restore arrest function of TnaC mutants; one of these mutations is located near the L-Trp binding site, while the other mutation is located near the ribosome active site. We used reporter gene fusions to show that both suppressor mutations have similar effects on TnaC mutants at the conserved residues involved in forming a free L-Trp binding site. However, they diverge in suppressing loss-of-function mutations in a conserved TnaC residue at the ribosome active site. With ribosome toeprinting assays, we determined that both suppressor mutations generate TnaC peptides, which are highly sensitive to L-Trp. Puromycin-challenge assays with isolated arrested ribosomes indicate that both TnaC suppressor mutants are resistant to peptidyl-tRNA cleavage by puromycin in the presence of L-Trp; however, they differ in their resistance to puromycin in the absence of L-Trp. We propose that the TnaC peptide two functionally distinct segments, a sensor domain and a stalling domain, and that the functional versatility of these domains is fine-tuned by the nature of their surrounding nonconserved residues.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38395310</pmid><doi>10.1016/j.jbc.2024.105780</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2256-693X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2024-03, Vol.300 (3), p.105780-105780, Article 105780
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_2954771190
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects arrested ribosomes
L-Trp
peptidyl transferase center
ribosomal exit tunnel
ribosome arresting peptide
tnaC
title Functional domains of a ribosome arresting peptide are affected by surrounding nonconserved residues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A36%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20domains%20of%20a%20ribosome%20arresting%20peptide%20are%20affected%20by%20surrounding%20nonconserved%20residues&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Judd,%20Heather%20N.G.&rft.date=2024-03&rft.volume=300&rft.issue=3&rft.spage=105780&rft.epage=105780&rft.pages=105780-105780&rft.artnum=105780&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2024.105780&rft_dat=%3Cproquest_cross%3E2954771190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2954771190&rft_id=info:pmid/38395310&rft_els_id=S002192582400156X&rfr_iscdi=true