Application of Residence Time Distribution for Measuring the Fluid Velocity and Dispersion Coefficient

Most studies on residence time distribution (RTD) have focused on the tail of the RTD curve, and very little attention has been paid to the effect of white noise on the measured results. The aim of this work is to study the effect of white noise on the calculated parameters with different data proce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering & technology 2007-01, Vol.30 (1), p.27-32
Hauptverfasser: Zhang, T. W., Wang, T. F., Wang, J. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32
container_issue 1
container_start_page 27
container_title Chemical engineering & technology
container_volume 30
creator Zhang, T. W.
Wang, T. F.
Wang, J. F.
description Most studies on residence time distribution (RTD) have focused on the tail of the RTD curve, and very little attention has been paid to the effect of white noise on the measured results. The aim of this work is to study the effect of white noise on the calculated parameters with different data processing methods. The anti‐disturbance abilities of the moment method and the least squares method are compared. The results show that the anti‐disturbance ability of the least squares method was better than that of the moment method. As a result of peak overlapping in the RTD curve of a loop reactor, the moment method cannot be used to calculate the fluid velocity and dispersion coefficient. Experiments show that the least squares method is still applicable in a loop reactor. The effect of white noise on the calculated parameters of residence time distribution (RTD) is investigated with different data processing methods. The anti‐dis‐turbance abilities of the moment method and the least squares method are compared. The least squares method is found to be most applicable in a loop reactor.
doi_str_mv 10.1002/ceat.200600002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29547250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29547250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4252-2c0ab26bb3adc1a1bb53cda50f994e0ef79509e1eff30dc99cc8cabd9a037f663</originalsourceid><addsrcrecordid>eNqFkEFv1DAQRi0EEkvLlbMvcMsytuNkfVwt3YK0tFW7lKPlTMZgyCbBTgT770nYqnBjLtbI730jfYy9ErAUAPItkhuWEqCAaeQTthBaiiwXUj9lCzAKslKL4jl7kdK3iRDTsmB-3fdNQDeEruWd57eUQk0tEt-HA_F3IQ0xVOOfb99F_pFcGmNov_DhK_FtM4aa31PTYRiO3LX1bPQU08xvOvI-YKB2OGfPvGsSvXx4z9in7cV-8z7bXV9-2Kx3GeZSy0wiuEoWVaVcjcKJqtIKa6fBG5MTkC-NBkNiylVQozGIK3RVbRyo0heFOmNvTrl97H6MlAZ7CAmpaVxL3ZisNDovpYYJXJ5AjF1KkbztYzi4eLQC7Fynneu0j3VOwuuHZJfQNT66FkP6a61y0FLNnDlxP0NDx_-k2s3Fev_vjezkTq3Tr0fXxe-2KFWp7eerS2tud_c3V3dbu1K_AcLll60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29547250</pqid></control><display><type>article</type><title>Application of Residence Time Distribution for Measuring the Fluid Velocity and Dispersion Coefficient</title><source>Wiley Online Library All Journals</source><creator>Zhang, T. W. ; Wang, T. F. ; Wang, J. F.</creator><creatorcontrib>Zhang, T. W. ; Wang, T. F. ; Wang, J. F.</creatorcontrib><description>Most studies on residence time distribution (RTD) have focused on the tail of the RTD curve, and very little attention has been paid to the effect of white noise on the measured results. The aim of this work is to study the effect of white noise on the calculated parameters with different data processing methods. The anti‐disturbance abilities of the moment method and the least squares method are compared. The results show that the anti‐disturbance ability of the least squares method was better than that of the moment method. As a result of peak overlapping in the RTD curve of a loop reactor, the moment method cannot be used to calculate the fluid velocity and dispersion coefficient. Experiments show that the least squares method is still applicable in a loop reactor. The effect of white noise on the calculated parameters of residence time distribution (RTD) is investigated with different data processing methods. The anti‐dis‐turbance abilities of the moment method and the least squares method are compared. The least squares method is found to be most applicable in a loop reactor.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/ceat.200600002</identifier><identifier>CODEN: CETEER</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Applied sciences ; Chemical engineering ; Dispersion coefficients ; Exact sciences and technology ; Fluid velocity ; Loop reactors ; Reactors ; Residence time distribution</subject><ispartof>Chemical engineering &amp; technology, 2007-01, Vol.30 (1), p.27-32</ispartof><rights>Copyright © 2007 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4252-2c0ab26bb3adc1a1bb53cda50f994e0ef79509e1eff30dc99cc8cabd9a037f663</citedby><cites>FETCH-LOGICAL-c4252-2c0ab26bb3adc1a1bb53cda50f994e0ef79509e1eff30dc99cc8cabd9a037f663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fceat.200600002$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fceat.200600002$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,4022,27921,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18405232$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, T. W.</creatorcontrib><creatorcontrib>Wang, T. F.</creatorcontrib><creatorcontrib>Wang, J. F.</creatorcontrib><title>Application of Residence Time Distribution for Measuring the Fluid Velocity and Dispersion Coefficient</title><title>Chemical engineering &amp; technology</title><addtitle>Chem. Eng. Technol</addtitle><description>Most studies on residence time distribution (RTD) have focused on the tail of the RTD curve, and very little attention has been paid to the effect of white noise on the measured results. The aim of this work is to study the effect of white noise on the calculated parameters with different data processing methods. The anti‐disturbance abilities of the moment method and the least squares method are compared. The results show that the anti‐disturbance ability of the least squares method was better than that of the moment method. As a result of peak overlapping in the RTD curve of a loop reactor, the moment method cannot be used to calculate the fluid velocity and dispersion coefficient. Experiments show that the least squares method is still applicable in a loop reactor. The effect of white noise on the calculated parameters of residence time distribution (RTD) is investigated with different data processing methods. The anti‐dis‐turbance abilities of the moment method and the least squares method are compared. The least squares method is found to be most applicable in a loop reactor.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Dispersion coefficients</subject><subject>Exact sciences and technology</subject><subject>Fluid velocity</subject><subject>Loop reactors</subject><subject>Reactors</subject><subject>Residence time distribution</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkEFv1DAQRi0EEkvLlbMvcMsytuNkfVwt3YK0tFW7lKPlTMZgyCbBTgT770nYqnBjLtbI730jfYy9ErAUAPItkhuWEqCAaeQTthBaiiwXUj9lCzAKslKL4jl7kdK3iRDTsmB-3fdNQDeEruWd57eUQk0tEt-HA_F3IQ0xVOOfb99F_pFcGmNov_DhK_FtM4aa31PTYRiO3LX1bPQU08xvOvI-YKB2OGfPvGsSvXx4z9in7cV-8z7bXV9-2Kx3GeZSy0wiuEoWVaVcjcKJqtIKa6fBG5MTkC-NBkNiylVQozGIK3RVbRyo0heFOmNvTrl97H6MlAZ7CAmpaVxL3ZisNDovpYYJXJ5AjF1KkbztYzi4eLQC7Fynneu0j3VOwuuHZJfQNT66FkP6a61y0FLNnDlxP0NDx_-k2s3Fev_vjezkTq3Tr0fXxe-2KFWp7eerS2tud_c3V3dbu1K_AcLll60</recordid><startdate>200701</startdate><enddate>200701</enddate><creator>Zhang, T. W.</creator><creator>Wang, T. F.</creator><creator>Wang, J. F.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200701</creationdate><title>Application of Residence Time Distribution for Measuring the Fluid Velocity and Dispersion Coefficient</title><author>Zhang, T. W. ; Wang, T. F. ; Wang, J. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4252-2c0ab26bb3adc1a1bb53cda50f994e0ef79509e1eff30dc99cc8cabd9a037f663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Dispersion coefficients</topic><topic>Exact sciences and technology</topic><topic>Fluid velocity</topic><topic>Loop reactors</topic><topic>Reactors</topic><topic>Residence time distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, T. W.</creatorcontrib><creatorcontrib>Wang, T. F.</creatorcontrib><creatorcontrib>Wang, J. F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, T. W.</au><au>Wang, T. F.</au><au>Wang, J. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Residence Time Distribution for Measuring the Fluid Velocity and Dispersion Coefficient</atitle><jtitle>Chemical engineering &amp; technology</jtitle><addtitle>Chem. Eng. Technol</addtitle><date>2007-01</date><risdate>2007</risdate><volume>30</volume><issue>1</issue><spage>27</spage><epage>32</epage><pages>27-32</pages><issn>0930-7516</issn><eissn>1521-4125</eissn><coden>CETEER</coden><abstract>Most studies on residence time distribution (RTD) have focused on the tail of the RTD curve, and very little attention has been paid to the effect of white noise on the measured results. The aim of this work is to study the effect of white noise on the calculated parameters with different data processing methods. The anti‐disturbance abilities of the moment method and the least squares method are compared. The results show that the anti‐disturbance ability of the least squares method was better than that of the moment method. As a result of peak overlapping in the RTD curve of a loop reactor, the moment method cannot be used to calculate the fluid velocity and dispersion coefficient. Experiments show that the least squares method is still applicable in a loop reactor. The effect of white noise on the calculated parameters of residence time distribution (RTD) is investigated with different data processing methods. The anti‐dis‐turbance abilities of the moment method and the least squares method are compared. The least squares method is found to be most applicable in a loop reactor.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ceat.200600002</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0930-7516
ispartof Chemical engineering & technology, 2007-01, Vol.30 (1), p.27-32
issn 0930-7516
1521-4125
language eng
recordid cdi_proquest_miscellaneous_29547250
source Wiley Online Library All Journals
subjects Applied sciences
Chemical engineering
Dispersion coefficients
Exact sciences and technology
Fluid velocity
Loop reactors
Reactors
Residence time distribution
title Application of Residence Time Distribution for Measuring the Fluid Velocity and Dispersion Coefficient
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Residence%20Time%20Distribution%20for%20Measuring%20the%20Fluid%20Velocity%20and%20Dispersion%20Coefficient&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=Zhang,%20T.%E2%80%89W.&rft.date=2007-01&rft.volume=30&rft.issue=1&rft.spage=27&rft.epage=32&rft.pages=27-32&rft.issn=0930-7516&rft.eissn=1521-4125&rft.coden=CETEER&rft_id=info:doi/10.1002/ceat.200600002&rft_dat=%3Cproquest_cross%3E29547250%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29547250&rft_id=info:pmid/&rfr_iscdi=true