Analysis of variance–principal component analysis: A soft tool for proteomic discovery
A soft tool for detection of biomarkers in high dimensional data sets has been developed. The tool combines analysis of variance (ANOVA) and principal component analysis (PCA). Covariations are separated using ANOVA into main effects and interaction. The covariances for each effect are combined with...
Gespeichert in:
Veröffentlicht in: | Analytica chimica acta 2005-07, Vol.544 (1), p.118-127 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127 |
---|---|
container_issue | 1 |
container_start_page | 118 |
container_title | Analytica chimica acta |
container_volume | 544 |
creator | Harrington, Peter de B. Vieira, Nancy E. Espinoza, Jimmy Nien, Jyh Kae Romero, Roberto Yergey, Alfred L. |
description | A soft tool for detection of biomarkers in high dimensional data sets has been developed. The tool combines analysis of variance (ANOVA) and principal component analysis (PCA). Covariations are separated using ANOVA into main effects and interaction. The covariances for each effect are combined with the pure error and subjected to PCA. If the main effect is significant compared to the residual error, the first principal component will span this source of variation. This technique avoids rotation of the principal components and when significant the variable loadings are amenable to interpretation. ANOVA–PCA is demonstrated as a tool for optimization of a proteomic assay for biomarkers. Two independent sets of matrix assisted laser desorption/ionization-mass spectra (MALDI-MS) were collected from amniotic fluids. These studies gave consistent biomarkers for premature delivery. |
doi_str_mv | 10.1016/j.aca.2005.02.042 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29546866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003267005002692</els_id><sourcerecordid>29546866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-b23bd4bd276c7dd11c9459eb7c00fcb2684e2c0e3c2a5d0592916dc1303d391c3</originalsourceid><addsrcrecordid>eNqFkM9qGzEQh0VJoY7bB-hNl-a2m9Gf1VrJyZi0KRh6aaE3oR1pQWa9cqS1wbe8Q9-wTxIZG3JLTsPA9_vN8BHylUHNgKnbTW3R1hygqYHXIPkHMmOLVlRScHlFZgAgKq5a-ESuc96UlTOQM_J3OdrhmEOmsacHm4Id0f9__rdLYcSwswPFuN3F0Y8TtRf0ji5pjv1EpxgH2sdEdylOPm4DUhcyxoNPx8_kY2-H7L9c5pz8-f7we_VYrX_9-LlarisUCz1VHRedk53jrcLWOcZQy0b7rkWAHjuuFtJzBC-Q28ZBo7lmyiETIJzQDMWc3Jx7yw9Pe58nsy0v-GGwo4_7bLhupFoo9S7IWqE0F7yA7Axiijkn35siY2vT0TAwJ9lmY4psc5JtgJsiu2S-XcptRjv0qWgM-TWotGRNywp3f-Z8UXIIPpmMwRflLiSPk3ExvHHlBYV9lb0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17369232</pqid></control><display><type>article</type><title>Analysis of variance–principal component analysis: A soft tool for proteomic discovery</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Harrington, Peter de B. ; Vieira, Nancy E. ; Espinoza, Jimmy ; Nien, Jyh Kae ; Romero, Roberto ; Yergey, Alfred L.</creator><creatorcontrib>Harrington, Peter de B. ; Vieira, Nancy E. ; Espinoza, Jimmy ; Nien, Jyh Kae ; Romero, Roberto ; Yergey, Alfred L.</creatorcontrib><description>A soft tool for detection of biomarkers in high dimensional data sets has been developed. The tool combines analysis of variance (ANOVA) and principal component analysis (PCA). Covariations are separated using ANOVA into main effects and interaction. The covariances for each effect are combined with the pure error and subjected to PCA. If the main effect is significant compared to the residual error, the first principal component will span this source of variation. This technique avoids rotation of the principal components and when significant the variable loadings are amenable to interpretation. ANOVA–PCA is demonstrated as a tool for optimization of a proteomic assay for biomarkers. Two independent sets of matrix assisted laser desorption/ionization-mass spectra (MALDI-MS) were collected from amniotic fluids. These studies gave consistent biomarkers for premature delivery.</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2005.02.042</identifier><identifier>CODEN: ACACAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Amniotic fluid ; Analysis of variance–principal component analysis ; Analytical chemistry ; ANOVA–PCA ; Chemistry ; Exact sciences and technology ; Hotelling T 2 ; MALDI-MS ; Mass spectrometry ; Matrix-assisted laser desorption/ionization ; Premature delivery ; Proteomic biomarker ; Spectrometric and optical methods</subject><ispartof>Analytica chimica acta, 2005-07, Vol.544 (1), p.118-127</ispartof><rights>2005 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-b23bd4bd276c7dd11c9459eb7c00fcb2684e2c0e3c2a5d0592916dc1303d391c3</citedby><cites>FETCH-LOGICAL-c389t-b23bd4bd276c7dd11c9459eb7c00fcb2684e2c0e3c2a5d0592916dc1303d391c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0003267005002692$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16941571$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Harrington, Peter de B.</creatorcontrib><creatorcontrib>Vieira, Nancy E.</creatorcontrib><creatorcontrib>Espinoza, Jimmy</creatorcontrib><creatorcontrib>Nien, Jyh Kae</creatorcontrib><creatorcontrib>Romero, Roberto</creatorcontrib><creatorcontrib>Yergey, Alfred L.</creatorcontrib><title>Analysis of variance–principal component analysis: A soft tool for proteomic discovery</title><title>Analytica chimica acta</title><description>A soft tool for detection of biomarkers in high dimensional data sets has been developed. The tool combines analysis of variance (ANOVA) and principal component analysis (PCA). Covariations are separated using ANOVA into main effects and interaction. The covariances for each effect are combined with the pure error and subjected to PCA. If the main effect is significant compared to the residual error, the first principal component will span this source of variation. This technique avoids rotation of the principal components and when significant the variable loadings are amenable to interpretation. ANOVA–PCA is demonstrated as a tool for optimization of a proteomic assay for biomarkers. Two independent sets of matrix assisted laser desorption/ionization-mass spectra (MALDI-MS) were collected from amniotic fluids. These studies gave consistent biomarkers for premature delivery.</description><subject>Amniotic fluid</subject><subject>Analysis of variance–principal component analysis</subject><subject>Analytical chemistry</subject><subject>ANOVA–PCA</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Hotelling T 2</subject><subject>MALDI-MS</subject><subject>Mass spectrometry</subject><subject>Matrix-assisted laser desorption/ionization</subject><subject>Premature delivery</subject><subject>Proteomic biomarker</subject><subject>Spectrometric and optical methods</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkM9qGzEQh0VJoY7bB-hNl-a2m9Gf1VrJyZi0KRh6aaE3oR1pQWa9cqS1wbe8Q9-wTxIZG3JLTsPA9_vN8BHylUHNgKnbTW3R1hygqYHXIPkHMmOLVlRScHlFZgAgKq5a-ESuc96UlTOQM_J3OdrhmEOmsacHm4Id0f9__rdLYcSwswPFuN3F0Y8TtRf0ji5pjv1EpxgH2sdEdylOPm4DUhcyxoNPx8_kY2-H7L9c5pz8-f7we_VYrX_9-LlarisUCz1VHRedk53jrcLWOcZQy0b7rkWAHjuuFtJzBC-Q28ZBo7lmyiETIJzQDMWc3Jx7yw9Pe58nsy0v-GGwo4_7bLhupFoo9S7IWqE0F7yA7Axiijkn35siY2vT0TAwJ9lmY4psc5JtgJsiu2S-XcptRjv0qWgM-TWotGRNywp3f-Z8UXIIPpmMwRflLiSPk3ExvHHlBYV9lb0</recordid><startdate>20050715</startdate><enddate>20050715</enddate><creator>Harrington, Peter de B.</creator><creator>Vieira, Nancy E.</creator><creator>Espinoza, Jimmy</creator><creator>Nien, Jyh Kae</creator><creator>Romero, Roberto</creator><creator>Yergey, Alfred L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20050715</creationdate><title>Analysis of variance–principal component analysis: A soft tool for proteomic discovery</title><author>Harrington, Peter de B. ; Vieira, Nancy E. ; Espinoza, Jimmy ; Nien, Jyh Kae ; Romero, Roberto ; Yergey, Alfred L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-b23bd4bd276c7dd11c9459eb7c00fcb2684e2c0e3c2a5d0592916dc1303d391c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amniotic fluid</topic><topic>Analysis of variance–principal component analysis</topic><topic>Analytical chemistry</topic><topic>ANOVA–PCA</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Hotelling T 2</topic><topic>MALDI-MS</topic><topic>Mass spectrometry</topic><topic>Matrix-assisted laser desorption/ionization</topic><topic>Premature delivery</topic><topic>Proteomic biomarker</topic><topic>Spectrometric and optical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harrington, Peter de B.</creatorcontrib><creatorcontrib>Vieira, Nancy E.</creatorcontrib><creatorcontrib>Espinoza, Jimmy</creatorcontrib><creatorcontrib>Nien, Jyh Kae</creatorcontrib><creatorcontrib>Romero, Roberto</creatorcontrib><creatorcontrib>Yergey, Alfred L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harrington, Peter de B.</au><au>Vieira, Nancy E.</au><au>Espinoza, Jimmy</au><au>Nien, Jyh Kae</au><au>Romero, Roberto</au><au>Yergey, Alfred L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of variance–principal component analysis: A soft tool for proteomic discovery</atitle><jtitle>Analytica chimica acta</jtitle><date>2005-07-15</date><risdate>2005</risdate><volume>544</volume><issue>1</issue><spage>118</spage><epage>127</epage><pages>118-127</pages><issn>0003-2670</issn><eissn>1873-4324</eissn><coden>ACACAM</coden><abstract>A soft tool for detection of biomarkers in high dimensional data sets has been developed. The tool combines analysis of variance (ANOVA) and principal component analysis (PCA). Covariations are separated using ANOVA into main effects and interaction. The covariances for each effect are combined with the pure error and subjected to PCA. If the main effect is significant compared to the residual error, the first principal component will span this source of variation. This technique avoids rotation of the principal components and when significant the variable loadings are amenable to interpretation. ANOVA–PCA is demonstrated as a tool for optimization of a proteomic assay for biomarkers. Two independent sets of matrix assisted laser desorption/ionization-mass spectra (MALDI-MS) were collected from amniotic fluids. These studies gave consistent biomarkers for premature delivery.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.aca.2005.02.042</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2670 |
ispartof | Analytica chimica acta, 2005-07, Vol.544 (1), p.118-127 |
issn | 0003-2670 1873-4324 |
language | eng |
recordid | cdi_proquest_miscellaneous_29546866 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Amniotic fluid Analysis of variance–principal component analysis Analytical chemistry ANOVA–PCA Chemistry Exact sciences and technology Hotelling T 2 MALDI-MS Mass spectrometry Matrix-assisted laser desorption/ionization Premature delivery Proteomic biomarker Spectrometric and optical methods |
title | Analysis of variance–principal component analysis: A soft tool for proteomic discovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A18%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20variance%E2%80%93principal%20component%20analysis:%20A%20soft%20tool%20for%20proteomic%20discovery&rft.jtitle=Analytica%20chimica%20acta&rft.au=Harrington,%20Peter%20de%20B.&rft.date=2005-07-15&rft.volume=544&rft.issue=1&rft.spage=118&rft.epage=127&rft.pages=118-127&rft.issn=0003-2670&rft.eissn=1873-4324&rft.coden=ACACAM&rft_id=info:doi/10.1016/j.aca.2005.02.042&rft_dat=%3Cproquest_cross%3E29546866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17369232&rft_id=info:pmid/&rft_els_id=S0003267005002692&rfr_iscdi=true |