Online prediction of diffusion wear on the flank through tool tip temperature in turning using artificial neural networks

Abstract Diffusion in cutting tool materials during machining contributes significantly to the tool wear and has been drawing the attention of several researchers for over a decade. The present work aims at employing a method to investigate tool material diffusion for online prediction of flank wear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture Journal of engineering manufacture, 2006-12, Vol.220 (12), p.2069-2076
Hauptverfasser: Rao, C H Srinivasa, Rao, D Nageswara, Rao, R N Someswara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2076
container_issue 12
container_start_page 2069
container_title Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture
container_volume 220
creator Rao, C H Srinivasa
Rao, D Nageswara
Rao, R N Someswara
description Abstract Diffusion in cutting tool materials during machining contributes significantly to the tool wear and has been drawing the attention of several researchers for over a decade. The present work aims at employing a method to investigate tool material diffusion for online prediction of flank wear using artificial neural networks. Experimentation is carried on a lathe under different cutting conditions. Flank wear is measured at various intervals of time off-line. Back propagation neural network fortified with heuristic methods of optimization has been employed in the present work. The cutting conditions and nodal temperature measured by a remote thermocouple are used as inputs and the amount of diffusion wear is obtained as the output. The model is validated by comparing with the experimental results. The proposed methodology, which employs a diffusion parameter for the assessment of tool wear from estimated tool tip temperatures, can be adapted to any combination of tool and work material.
doi_str_mv 10.1243/09544054JEM541
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29545186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1243_09544054JEM541</sage_id><sourcerecordid>1297882311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-b659c98d1d6ad065625550ae6626dbde0ffd33dcad4ed969a7052ec547f4d0bb3</originalsourceid><addsrcrecordid>eNptkUlPBCEQhYnRxHG5eiYmejGt0Cw9HI1xjcaLnjsMFCPa07RAx_jvZRwTl8iBV6S-elAUQnuUHNOasxOiBOdE8JvzO8HpGprUhNOqVo1YR5NlslpmN9FWSs-krIaxCXq_7zvfAx4iWG-yDz0ODlvv3JiWhzfQERfNT4Bdp_uXEsUwzp9wDqHD2Q84w2KAqPMYAftCjrH3_RyX-rLrmL3zxusO9zDGT8lvIb6kHbThdJdg90u30ePF-cPZVXV7f3l9dnpbGSZZrmZSKKOmllqpLZFC1kIIokHKWtqZBeKcZcwabTlYJZVuiKjBCN44bslsxrbR4cp3iOF1hJTbhU8GutIMhDG1dfkZQaeygPt_wOdQeilva6kSlKtG8QIdryATQ0oRXDtEv9DxvaWkXY6h_T2GUnDw5aqT0Z2Lujc-fVdNeS2njBXuaMUlPYcfN__v-gE97Jap</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195149794</pqid></control><display><type>article</type><title>Online prediction of diffusion wear on the flank through tool tip temperature in turning using artificial neural networks</title><source>SAGE Complete A-Z List</source><creator>Rao, C H Srinivasa ; Rao, D Nageswara ; Rao, R N Someswara</creator><creatorcontrib>Rao, C H Srinivasa ; Rao, D Nageswara ; Rao, R N Someswara</creatorcontrib><description>Abstract Diffusion in cutting tool materials during machining contributes significantly to the tool wear and has been drawing the attention of several researchers for over a decade. The present work aims at employing a method to investigate tool material diffusion for online prediction of flank wear using artificial neural networks. Experimentation is carried on a lathe under different cutting conditions. Flank wear is measured at various intervals of time off-line. Back propagation neural network fortified with heuristic methods of optimization has been employed in the present work. The cutting conditions and nodal temperature measured by a remote thermocouple are used as inputs and the amount of diffusion wear is obtained as the output. The model is validated by comparing with the experimental results. The proposed methodology, which employs a diffusion parameter for the assessment of tool wear from estimated tool tip temperatures, can be adapted to any combination of tool and work material.</description><identifier>ISSN: 0954-4054</identifier><identifier>EISSN: 2041-2975</identifier><identifier>DOI: 10.1243/09544054JEM541</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Applied sciences ; Cutting tools ; Diffusion ; Exact sciences and technology ; Materials fatigue ; Materials science ; Mechanical engineering. Machine design ; Optimization</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture, 2006-12, Vol.220 (12), p.2069-2076</ispartof><rights>2006 Institution of Mechanical Engineers</rights><rights>2007 INIST-CNRS</rights><rights>Copyright Professional Engineering Publishing Ltd Dec 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-b659c98d1d6ad065625550ae6626dbde0ffd33dcad4ed969a7052ec547f4d0bb3</citedby><cites>FETCH-LOGICAL-c363t-b659c98d1d6ad065625550ae6626dbde0ffd33dcad4ed969a7052ec547f4d0bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1243/09544054JEM541$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1243/09544054JEM541$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,778,782,21802,27907,27908,43604,43605</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18426833$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rao, C H Srinivasa</creatorcontrib><creatorcontrib>Rao, D Nageswara</creatorcontrib><creatorcontrib>Rao, R N Someswara</creatorcontrib><title>Online prediction of diffusion wear on the flank through tool tip temperature in turning using artificial neural networks</title><title>Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture</title><description>Abstract Diffusion in cutting tool materials during machining contributes significantly to the tool wear and has been drawing the attention of several researchers for over a decade. The present work aims at employing a method to investigate tool material diffusion for online prediction of flank wear using artificial neural networks. Experimentation is carried on a lathe under different cutting conditions. Flank wear is measured at various intervals of time off-line. Back propagation neural network fortified with heuristic methods of optimization has been employed in the present work. The cutting conditions and nodal temperature measured by a remote thermocouple are used as inputs and the amount of diffusion wear is obtained as the output. The model is validated by comparing with the experimental results. The proposed methodology, which employs a diffusion parameter for the assessment of tool wear from estimated tool tip temperatures, can be adapted to any combination of tool and work material.</description><subject>Applied sciences</subject><subject>Cutting tools</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>Materials fatigue</subject><subject>Materials science</subject><subject>Mechanical engineering. Machine design</subject><subject>Optimization</subject><issn>0954-4054</issn><issn>2041-2975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkUlPBCEQhYnRxHG5eiYmejGt0Cw9HI1xjcaLnjsMFCPa07RAx_jvZRwTl8iBV6S-elAUQnuUHNOasxOiBOdE8JvzO8HpGprUhNOqVo1YR5NlslpmN9FWSs-krIaxCXq_7zvfAx4iWG-yDz0ODlvv3JiWhzfQERfNT4Bdp_uXEsUwzp9wDqHD2Q84w2KAqPMYAftCjrH3_RyX-rLrmL3zxusO9zDGT8lvIb6kHbThdJdg90u30ePF-cPZVXV7f3l9dnpbGSZZrmZSKKOmllqpLZFC1kIIokHKWtqZBeKcZcwabTlYJZVuiKjBCN44bslsxrbR4cp3iOF1hJTbhU8GutIMhDG1dfkZQaeygPt_wOdQeilva6kSlKtG8QIdryATQ0oRXDtEv9DxvaWkXY6h_T2GUnDw5aqT0Z2Lujc-fVdNeS2njBXuaMUlPYcfN__v-gE97Jap</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Rao, C H Srinivasa</creator><creator>Rao, D Nageswara</creator><creator>Rao, R N Someswara</creator><general>SAGE Publications</general><general>Mechanical Engineering Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20061201</creationdate><title>Online prediction of diffusion wear on the flank through tool tip temperature in turning using artificial neural networks</title><author>Rao, C H Srinivasa ; Rao, D Nageswara ; Rao, R N Someswara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-b659c98d1d6ad065625550ae6626dbde0ffd33dcad4ed969a7052ec547f4d0bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Cutting tools</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>Materials fatigue</topic><topic>Materials science</topic><topic>Mechanical engineering. Machine design</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rao, C H Srinivasa</creatorcontrib><creatorcontrib>Rao, D Nageswara</creatorcontrib><creatorcontrib>Rao, R N Someswara</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao, C H Srinivasa</au><au>Rao, D Nageswara</au><au>Rao, R N Someswara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online prediction of diffusion wear on the flank through tool tip temperature in turning using artificial neural networks</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture</jtitle><date>2006-12-01</date><risdate>2006</risdate><volume>220</volume><issue>12</issue><spage>2069</spage><epage>2076</epage><pages>2069-2076</pages><issn>0954-4054</issn><eissn>2041-2975</eissn><abstract>Abstract Diffusion in cutting tool materials during machining contributes significantly to the tool wear and has been drawing the attention of several researchers for over a decade. The present work aims at employing a method to investigate tool material diffusion for online prediction of flank wear using artificial neural networks. Experimentation is carried on a lathe under different cutting conditions. Flank wear is measured at various intervals of time off-line. Back propagation neural network fortified with heuristic methods of optimization has been employed in the present work. The cutting conditions and nodal temperature measured by a remote thermocouple are used as inputs and the amount of diffusion wear is obtained as the output. The model is validated by comparing with the experimental results. The proposed methodology, which employs a diffusion parameter for the assessment of tool wear from estimated tool tip temperatures, can be adapted to any combination of tool and work material.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1243/09544054JEM541</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0954-4054
ispartof Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture, 2006-12, Vol.220 (12), p.2069-2076
issn 0954-4054
2041-2975
language eng
recordid cdi_proquest_miscellaneous_29545186
source SAGE Complete A-Z List
subjects Applied sciences
Cutting tools
Diffusion
Exact sciences and technology
Materials fatigue
Materials science
Mechanical engineering. Machine design
Optimization
title Online prediction of diffusion wear on the flank through tool tip temperature in turning using artificial neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20prediction%20of%20diffusion%20wear%20on%20the%20flank%20through%20tool%20tip%20temperature%20in%20turning%20using%20artificial%20neural%20networks&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20B,%20Journal%20of%20engineering%20manufacture&rft.au=Rao,%20C%20H%20Srinivasa&rft.date=2006-12-01&rft.volume=220&rft.issue=12&rft.spage=2069&rft.epage=2076&rft.pages=2069-2076&rft.issn=0954-4054&rft.eissn=2041-2975&rft_id=info:doi/10.1243/09544054JEM541&rft_dat=%3Cproquest_cross%3E1297882311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195149794&rft_id=info:pmid/&rft_sage_id=10.1243_09544054JEM541&rfr_iscdi=true