Pattern recognition by fusion of directional basis function and probabilistic neural network

The basal model of directional basis probabilistic neural network (DBPNN) and the corresponding algorithm and theory applied in pattern recognition are investigated aiming at utilizing the advantage and overcoming the shortcomings of directional basis function neural network (DBFNN) andprobabilistic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ji xie gong cheng xue bao 2005-12, Vol.41 (12), p.228-233
Hauptverfasser: Luo, Xiongbiao, Chen, Tiequn, Wan, Ying
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 233
container_issue 12
container_start_page 228
container_title Ji xie gong cheng xue bao
container_volume 41
creator Luo, Xiongbiao
Chen, Tiequn
Wan, Ying
description The basal model of directional basis probabilistic neural network (DBPNN) and the corresponding algorithm and theory applied in pattern recognition are investigated aiming at utilizing the advantage and overcoming the shortcomings of directional basis function neural network (DBFNN) andprobabilistic neural network (PNN). Its application to pattern recognition is from theresults obtained in classification of cracks and porosity in weld defect. It can be seenthat DBPNN has greater improvement in computation speed and classification, compared with the DBFNN and PNN.
doi_str_mv 10.3901/JME.2005.12.228
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_29544769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29544769</sourcerecordid><originalsourceid>FETCH-LOGICAL-p101t-817fa444d26f6253cbd92e30d6e650c33e52210447b041d638df1d67d0c843cf3</originalsourceid><addsrcrecordid>eNotTjlPwzAY9QASVenM6okt4fOdjKgqR1UEA2xIlU9kEewSO0L8e1Jgek_v0kPogkDLeiBX24dNSwFES2hLaXeCFiCUaqTs5BlalRINEEYVFYIv0OuTrtWPCY_e5rcUa8wJm28cpnJkOWAXZ-so6wEbXWKZvfQrYJ0cPozZaBOHWGq0OPlpnHPJ1688vp-j06CH4lf_uEQvN5vn9V2ze7y9X1_vmgMBUpuOqKA5547KIKlg1rieegZOeinAMuYFpQQ4VwY4cZJ1LsygHNiOMxvYEl3-7c5nPidf6v4jFuuHQSefp7KnvZjLsmc_WHFWdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29544769</pqid></control><display><type>article</type><title>Pattern recognition by fusion of directional basis function and probabilistic neural network</title><source>Alma/SFX Local Collection</source><creator>Luo, Xiongbiao ; Chen, Tiequn ; Wan, Ying</creator><creatorcontrib>Luo, Xiongbiao ; Chen, Tiequn ; Wan, Ying</creatorcontrib><description>The basal model of directional basis probabilistic neural network (DBPNN) and the corresponding algorithm and theory applied in pattern recognition are investigated aiming at utilizing the advantage and overcoming the shortcomings of directional basis function neural network (DBFNN) andprobabilistic neural network (PNN). Its application to pattern recognition is from theresults obtained in classification of cracks and porosity in weld defect. It can be seenthat DBPNN has greater improvement in computation speed and classification, compared with the DBFNN and PNN.</description><identifier>ISSN: 0577-6686</identifier><identifier>DOI: 10.3901/JME.2005.12.228</identifier><language>chi</language><ispartof>Ji xie gong cheng xue bao, 2005-12, Vol.41 (12), p.228-233</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Luo, Xiongbiao</creatorcontrib><creatorcontrib>Chen, Tiequn</creatorcontrib><creatorcontrib>Wan, Ying</creatorcontrib><title>Pattern recognition by fusion of directional basis function and probabilistic neural network</title><title>Ji xie gong cheng xue bao</title><description>The basal model of directional basis probabilistic neural network (DBPNN) and the corresponding algorithm and theory applied in pattern recognition are investigated aiming at utilizing the advantage and overcoming the shortcomings of directional basis function neural network (DBFNN) andprobabilistic neural network (PNN). Its application to pattern recognition is from theresults obtained in classification of cracks and porosity in weld defect. It can be seenthat DBPNN has greater improvement in computation speed and classification, compared with the DBFNN and PNN.</description><issn>0577-6686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNotTjlPwzAY9QASVenM6okt4fOdjKgqR1UEA2xIlU9kEewSO0L8e1Jgek_v0kPogkDLeiBX24dNSwFES2hLaXeCFiCUaqTs5BlalRINEEYVFYIv0OuTrtWPCY_e5rcUa8wJm28cpnJkOWAXZ-so6wEbXWKZvfQrYJ0cPozZaBOHWGq0OPlpnHPJ1688vp-j06CH4lf_uEQvN5vn9V2ze7y9X1_vmgMBUpuOqKA5547KIKlg1rieegZOeinAMuYFpQQ4VwY4cZJ1LsygHNiOMxvYEl3-7c5nPidf6v4jFuuHQSefp7KnvZjLsmc_WHFWdw</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Luo, Xiongbiao</creator><creator>Chen, Tiequn</creator><creator>Wan, Ying</creator><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20051201</creationdate><title>Pattern recognition by fusion of directional basis function and probabilistic neural network</title><author>Luo, Xiongbiao ; Chen, Tiequn ; Wan, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p101t-817fa444d26f6253cbd92e30d6e650c33e52210447b041d638df1d67d0c843cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Xiongbiao</creatorcontrib><creatorcontrib>Chen, Tiequn</creatorcontrib><creatorcontrib>Wan, Ying</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Ji xie gong cheng xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Xiongbiao</au><au>Chen, Tiequn</au><au>Wan, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern recognition by fusion of directional basis function and probabilistic neural network</atitle><jtitle>Ji xie gong cheng xue bao</jtitle><date>2005-12-01</date><risdate>2005</risdate><volume>41</volume><issue>12</issue><spage>228</spage><epage>233</epage><pages>228-233</pages><issn>0577-6686</issn><abstract>The basal model of directional basis probabilistic neural network (DBPNN) and the corresponding algorithm and theory applied in pattern recognition are investigated aiming at utilizing the advantage and overcoming the shortcomings of directional basis function neural network (DBFNN) andprobabilistic neural network (PNN). Its application to pattern recognition is from theresults obtained in classification of cracks and porosity in weld defect. It can be seenthat DBPNN has greater improvement in computation speed and classification, compared with the DBFNN and PNN.</abstract><doi>10.3901/JME.2005.12.228</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0577-6686
ispartof Ji xie gong cheng xue bao, 2005-12, Vol.41 (12), p.228-233
issn 0577-6686
language chi
recordid cdi_proquest_miscellaneous_29544769
source Alma/SFX Local Collection
title Pattern recognition by fusion of directional basis function and probabilistic neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern%20recognition%20by%20fusion%20of%20directional%20basis%20function%20and%20probabilistic%20neural%20network&rft.jtitle=Ji%20xie%20gong%20cheng%20xue%20bao&rft.au=Luo,%20Xiongbiao&rft.date=2005-12-01&rft.volume=41&rft.issue=12&rft.spage=228&rft.epage=233&rft.pages=228-233&rft.issn=0577-6686&rft_id=info:doi/10.3901/JME.2005.12.228&rft_dat=%3Cproquest%3E29544769%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29544769&rft_id=info:pmid/&rfr_iscdi=true