Pattern recognition by fusion of directional basis function and probabilistic neural network
The basal model of directional basis probabilistic neural network (DBPNN) and the corresponding algorithm and theory applied in pattern recognition are investigated aiming at utilizing the advantage and overcoming the shortcomings of directional basis function neural network (DBFNN) andprobabilistic...
Gespeichert in:
Veröffentlicht in: | Ji xie gong cheng xue bao 2005-12, Vol.41 (12), p.228-233 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 233 |
---|---|
container_issue | 12 |
container_start_page | 228 |
container_title | Ji xie gong cheng xue bao |
container_volume | 41 |
creator | Luo, Xiongbiao Chen, Tiequn Wan, Ying |
description | The basal model of directional basis probabilistic neural network (DBPNN) and the corresponding algorithm and theory applied in pattern recognition are investigated aiming at utilizing the advantage and overcoming the shortcomings of directional basis function neural network (DBFNN) andprobabilistic neural network (PNN). Its application to pattern recognition is from theresults obtained in classification of cracks and porosity in weld defect. It can be seenthat DBPNN has greater improvement in computation speed and classification, compared with the DBFNN and PNN. |
doi_str_mv | 10.3901/JME.2005.12.228 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_29544769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29544769</sourcerecordid><originalsourceid>FETCH-LOGICAL-p101t-817fa444d26f6253cbd92e30d6e650c33e52210447b041d638df1d67d0c843cf3</originalsourceid><addsrcrecordid>eNotTjlPwzAY9QASVenM6okt4fOdjKgqR1UEA2xIlU9kEewSO0L8e1Jgek_v0kPogkDLeiBX24dNSwFES2hLaXeCFiCUaqTs5BlalRINEEYVFYIv0OuTrtWPCY_e5rcUa8wJm28cpnJkOWAXZ-so6wEbXWKZvfQrYJ0cPozZaBOHWGq0OPlpnHPJ1688vp-j06CH4lf_uEQvN5vn9V2ze7y9X1_vmgMBUpuOqKA5547KIKlg1rieegZOeinAMuYFpQQ4VwY4cZJ1LsygHNiOMxvYEl3-7c5nPidf6v4jFuuHQSefp7KnvZjLsmc_WHFWdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29544769</pqid></control><display><type>article</type><title>Pattern recognition by fusion of directional basis function and probabilistic neural network</title><source>Alma/SFX Local Collection</source><creator>Luo, Xiongbiao ; Chen, Tiequn ; Wan, Ying</creator><creatorcontrib>Luo, Xiongbiao ; Chen, Tiequn ; Wan, Ying</creatorcontrib><description>The basal model of directional basis probabilistic neural network (DBPNN) and the corresponding algorithm and theory applied in pattern recognition are investigated aiming at utilizing the advantage and overcoming the shortcomings of directional basis function neural network (DBFNN) andprobabilistic neural network (PNN). Its application to pattern recognition is from theresults obtained in classification of cracks and porosity in weld defect. It can be seenthat DBPNN has greater improvement in computation speed and classification, compared with the DBFNN and PNN.</description><identifier>ISSN: 0577-6686</identifier><identifier>DOI: 10.3901/JME.2005.12.228</identifier><language>chi</language><ispartof>Ji xie gong cheng xue bao, 2005-12, Vol.41 (12), p.228-233</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Luo, Xiongbiao</creatorcontrib><creatorcontrib>Chen, Tiequn</creatorcontrib><creatorcontrib>Wan, Ying</creatorcontrib><title>Pattern recognition by fusion of directional basis function and probabilistic neural network</title><title>Ji xie gong cheng xue bao</title><description>The basal model of directional basis probabilistic neural network (DBPNN) and the corresponding algorithm and theory applied in pattern recognition are investigated aiming at utilizing the advantage and overcoming the shortcomings of directional basis function neural network (DBFNN) andprobabilistic neural network (PNN). Its application to pattern recognition is from theresults obtained in classification of cracks and porosity in weld defect. It can be seenthat DBPNN has greater improvement in computation speed and classification, compared with the DBFNN and PNN.</description><issn>0577-6686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNotTjlPwzAY9QASVenM6okt4fOdjKgqR1UEA2xIlU9kEewSO0L8e1Jgek_v0kPogkDLeiBX24dNSwFES2hLaXeCFiCUaqTs5BlalRINEEYVFYIv0OuTrtWPCY_e5rcUa8wJm28cpnJkOWAXZ-so6wEbXWKZvfQrYJ0cPozZaBOHWGq0OPlpnHPJ1688vp-j06CH4lf_uEQvN5vn9V2ze7y9X1_vmgMBUpuOqKA5547KIKlg1rieegZOeinAMuYFpQQ4VwY4cZJ1LsygHNiOMxvYEl3-7c5nPidf6v4jFuuHQSefp7KnvZjLsmc_WHFWdw</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Luo, Xiongbiao</creator><creator>Chen, Tiequn</creator><creator>Wan, Ying</creator><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20051201</creationdate><title>Pattern recognition by fusion of directional basis function and probabilistic neural network</title><author>Luo, Xiongbiao ; Chen, Tiequn ; Wan, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p101t-817fa444d26f6253cbd92e30d6e650c33e52210447b041d638df1d67d0c843cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Xiongbiao</creatorcontrib><creatorcontrib>Chen, Tiequn</creatorcontrib><creatorcontrib>Wan, Ying</creatorcontrib><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Ji xie gong cheng xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Xiongbiao</au><au>Chen, Tiequn</au><au>Wan, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern recognition by fusion of directional basis function and probabilistic neural network</atitle><jtitle>Ji xie gong cheng xue bao</jtitle><date>2005-12-01</date><risdate>2005</risdate><volume>41</volume><issue>12</issue><spage>228</spage><epage>233</epage><pages>228-233</pages><issn>0577-6686</issn><abstract>The basal model of directional basis probabilistic neural network (DBPNN) and the corresponding algorithm and theory applied in pattern recognition are investigated aiming at utilizing the advantage and overcoming the shortcomings of directional basis function neural network (DBFNN) andprobabilistic neural network (PNN). Its application to pattern recognition is from theresults obtained in classification of cracks and porosity in weld defect. It can be seenthat DBPNN has greater improvement in computation speed and classification, compared with the DBFNN and PNN.</abstract><doi>10.3901/JME.2005.12.228</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0577-6686 |
ispartof | Ji xie gong cheng xue bao, 2005-12, Vol.41 (12), p.228-233 |
issn | 0577-6686 |
language | chi |
recordid | cdi_proquest_miscellaneous_29544769 |
source | Alma/SFX Local Collection |
title | Pattern recognition by fusion of directional basis function and probabilistic neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern%20recognition%20by%20fusion%20of%20directional%20basis%20function%20and%20probabilistic%20neural%20network&rft.jtitle=Ji%20xie%20gong%20cheng%20xue%20bao&rft.au=Luo,%20Xiongbiao&rft.date=2005-12-01&rft.volume=41&rft.issue=12&rft.spage=228&rft.epage=233&rft.pages=228-233&rft.issn=0577-6686&rft_id=info:doi/10.3901/JME.2005.12.228&rft_dat=%3Cproquest%3E29544769%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29544769&rft_id=info:pmid/&rfr_iscdi=true |