Pattern decomposition and quantitative-phase analysis in pulsed neutron transmission

Neutron diffraction methods provide accurate quantitative insight into material properties with applications ranging from fundamental physics to applied engineering research. Neutron radiography or tomography on the other hand, are useful tools in the non-destructive spatial imaging of materials or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. B, Condensed matter Condensed matter, 2004-07, Vol.350 (1), p.159-161
Hauptverfasser: Steuwer, A, Santisteban, J.R, Withers, P.J, Edwards, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 161
container_issue 1
container_start_page 159
container_title Physica. B, Condensed matter
container_volume 350
creator Steuwer, A
Santisteban, J.R
Withers, P.J
Edwards, L
description Neutron diffraction methods provide accurate quantitative insight into material properties with applications ranging from fundamental physics to applied engineering research. Neutron radiography or tomography on the other hand, are useful tools in the non-destructive spatial imaging of materials or engineering components, but are less accurate with respect to any quantitative analysis. It is possible to combine the advantages of diffraction and radiography using pulsed neutron transmission in a novel way. Using a pixellated detector at a time-of-flight source it is possible to collect 2D ‘images’ containing a great deal of interesting information in the thermal regime. This together with the unprecedented intensities available at spallation sources and improvements in computing power allow for a re-assessment of the transmission methods. It opens the possibility of simultaneous imaging of diverse material properties such as strain or temperature, as well as the variation in attenuation, and can assist in the determination of phase volume fraction. Spatial and time resolution (for dynamic experiment) are limited only by the detector technology and the intensity of the source. In this example, phase information contained in the cross-section is extracted from Bragg edges using an approach similar to pattern decomposition.
doi_str_mv 10.1016/j.physb.2004.04.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29542318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452604005794</els_id><sourcerecordid>29542318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-dcc76445ac70280200a6d436a5d970b2c9d4dc6655f4210063c6a1fe79eb2e5e3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLg-vELvPSit675atoePIj4BYIe9ByyyRSzdNOaSYX996a7gjeHgYGZ997MPEIuGF0yytT1ejl-bnG15JTK5ZysOSAL1tSi5ExUh2RBW85KWXF1TE4Q1zQHq9mCvL-ZlCCGwoEdNuOAPvkhFCa44msyIflkkv-Gcvw0CLlt-i16LHwoxqlHcEWAKcXMSNEE3HjETD8jR53J0_Pfeko-Hu7f757Kl9fH57vbl9JK3qTSWVsrKStja8obmo83ykmhTOXamq64bZ10Vqmq6iRnlCphlWEd1C2sOFQgTsnVXneMw9cEmHQ-wELfmwDDhJq3leSCNRko9kAbB8QInR6j35i41Yzq2UG91jsH9eygnnPHuvyVN2hN3-UPrcc_qqJMKDHjbvY4yL9-e4garYdgwfkINmk3-H_3_ABm_4mN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29542318</pqid></control><display><type>article</type><title>Pattern decomposition and quantitative-phase analysis in pulsed neutron transmission</title><source>Elsevier ScienceDirect Journals</source><creator>Steuwer, A ; Santisteban, J.R ; Withers, P.J ; Edwards, L</creator><creatorcontrib>Steuwer, A ; Santisteban, J.R ; Withers, P.J ; Edwards, L</creatorcontrib><description>Neutron diffraction methods provide accurate quantitative insight into material properties with applications ranging from fundamental physics to applied engineering research. Neutron radiography or tomography on the other hand, are useful tools in the non-destructive spatial imaging of materials or engineering components, but are less accurate with respect to any quantitative analysis. It is possible to combine the advantages of diffraction and radiography using pulsed neutron transmission in a novel way. Using a pixellated detector at a time-of-flight source it is possible to collect 2D ‘images’ containing a great deal of interesting information in the thermal regime. This together with the unprecedented intensities available at spallation sources and improvements in computing power allow for a re-assessment of the transmission methods. It opens the possibility of simultaneous imaging of diverse material properties such as strain or temperature, as well as the variation in attenuation, and can assist in the determination of phase volume fraction. Spatial and time resolution (for dynamic experiment) are limited only by the detector technology and the intensity of the source. In this example, phase information contained in the cross-section is extracted from Bragg edges using an approach similar to pattern decomposition.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2004.04.018</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bragg edge ; Cross-disciplinary physics: materials science; rheology ; Cross-section ; Exact sciences and technology ; Materials science ; Materials testing ; Methods of materials testing and analysis ; Physics ; Pulsed neutron transmission ; Quantitative-phase analysis</subject><ispartof>Physica. B, Condensed matter, 2004-07, Vol.350 (1), p.159-161</ispartof><rights>2004 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-dcc76445ac70280200a6d436a5d970b2c9d4dc6655f4210063c6a1fe79eb2e5e3</citedby><cites>FETCH-LOGICAL-c428t-dcc76445ac70280200a6d436a5d970b2c9d4dc6655f4210063c6a1fe79eb2e5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physb.2004.04.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3536,23910,23911,25119,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16013638$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Steuwer, A</creatorcontrib><creatorcontrib>Santisteban, J.R</creatorcontrib><creatorcontrib>Withers, P.J</creatorcontrib><creatorcontrib>Edwards, L</creatorcontrib><title>Pattern decomposition and quantitative-phase analysis in pulsed neutron transmission</title><title>Physica. B, Condensed matter</title><description>Neutron diffraction methods provide accurate quantitative insight into material properties with applications ranging from fundamental physics to applied engineering research. Neutron radiography or tomography on the other hand, are useful tools in the non-destructive spatial imaging of materials or engineering components, but are less accurate with respect to any quantitative analysis. It is possible to combine the advantages of diffraction and radiography using pulsed neutron transmission in a novel way. Using a pixellated detector at a time-of-flight source it is possible to collect 2D ‘images’ containing a great deal of interesting information in the thermal regime. This together with the unprecedented intensities available at spallation sources and improvements in computing power allow for a re-assessment of the transmission methods. It opens the possibility of simultaneous imaging of diverse material properties such as strain or temperature, as well as the variation in attenuation, and can assist in the determination of phase volume fraction. Spatial and time resolution (for dynamic experiment) are limited only by the detector technology and the intensity of the source. In this example, phase information contained in the cross-section is extracted from Bragg edges using an approach similar to pattern decomposition.</description><subject>Bragg edge</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Cross-section</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Materials testing</subject><subject>Methods of materials testing and analysis</subject><subject>Physics</subject><subject>Pulsed neutron transmission</subject><subject>Quantitative-phase analysis</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLg-vELvPSit675atoePIj4BYIe9ByyyRSzdNOaSYX996a7gjeHgYGZ997MPEIuGF0yytT1ejl-bnG15JTK5ZysOSAL1tSi5ExUh2RBW85KWXF1TE4Q1zQHq9mCvL-ZlCCGwoEdNuOAPvkhFCa44msyIflkkv-Gcvw0CLlt-i16LHwoxqlHcEWAKcXMSNEE3HjETD8jR53J0_Pfeko-Hu7f757Kl9fH57vbl9JK3qTSWVsrKStja8obmo83ykmhTOXamq64bZ10Vqmq6iRnlCphlWEd1C2sOFQgTsnVXneMw9cEmHQ-wELfmwDDhJq3leSCNRko9kAbB8QInR6j35i41Yzq2UG91jsH9eygnnPHuvyVN2hN3-UPrcc_qqJMKDHjbvY4yL9-e4garYdgwfkINmk3-H_3_ABm_4mN</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Steuwer, A</creator><creator>Santisteban, J.R</creator><creator>Withers, P.J</creator><creator>Edwards, L</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20040701</creationdate><title>Pattern decomposition and quantitative-phase analysis in pulsed neutron transmission</title><author>Steuwer, A ; Santisteban, J.R ; Withers, P.J ; Edwards, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-dcc76445ac70280200a6d436a5d970b2c9d4dc6655f4210063c6a1fe79eb2e5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bragg edge</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Cross-section</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Materials testing</topic><topic>Methods of materials testing and analysis</topic><topic>Physics</topic><topic>Pulsed neutron transmission</topic><topic>Quantitative-phase analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steuwer, A</creatorcontrib><creatorcontrib>Santisteban, J.R</creatorcontrib><creatorcontrib>Withers, P.J</creatorcontrib><creatorcontrib>Edwards, L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steuwer, A</au><au>Santisteban, J.R</au><au>Withers, P.J</au><au>Edwards, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern decomposition and quantitative-phase analysis in pulsed neutron transmission</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2004-07-01</date><risdate>2004</risdate><volume>350</volume><issue>1</issue><spage>159</spage><epage>161</epage><pages>159-161</pages><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>Neutron diffraction methods provide accurate quantitative insight into material properties with applications ranging from fundamental physics to applied engineering research. Neutron radiography or tomography on the other hand, are useful tools in the non-destructive spatial imaging of materials or engineering components, but are less accurate with respect to any quantitative analysis. It is possible to combine the advantages of diffraction and radiography using pulsed neutron transmission in a novel way. Using a pixellated detector at a time-of-flight source it is possible to collect 2D ‘images’ containing a great deal of interesting information in the thermal regime. This together with the unprecedented intensities available at spallation sources and improvements in computing power allow for a re-assessment of the transmission methods. It opens the possibility of simultaneous imaging of diverse material properties such as strain or temperature, as well as the variation in attenuation, and can assist in the determination of phase volume fraction. Spatial and time resolution (for dynamic experiment) are limited only by the detector technology and the intensity of the source. In this example, phase information contained in the cross-section is extracted from Bragg edges using an approach similar to pattern decomposition.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2004.04.018</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-4526
ispartof Physica. B, Condensed matter, 2004-07, Vol.350 (1), p.159-161
issn 0921-4526
1873-2135
language eng
recordid cdi_proquest_miscellaneous_29542318
source Elsevier ScienceDirect Journals
subjects Bragg edge
Cross-disciplinary physics: materials science
rheology
Cross-section
Exact sciences and technology
Materials science
Materials testing
Methods of materials testing and analysis
Physics
Pulsed neutron transmission
Quantitative-phase analysis
title Pattern decomposition and quantitative-phase analysis in pulsed neutron transmission
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern%20decomposition%20and%20quantitative-phase%20analysis%20in%20pulsed%20neutron%20transmission&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Steuwer,%20A&rft.date=2004-07-01&rft.volume=350&rft.issue=1&rft.spage=159&rft.epage=161&rft.pages=159-161&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2004.04.018&rft_dat=%3Cproquest_cross%3E29542318%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29542318&rft_id=info:pmid/&rft_els_id=S0921452604005794&rfr_iscdi=true