Pattern decomposition and quantitative-phase analysis in pulsed neutron transmission
Neutron diffraction methods provide accurate quantitative insight into material properties with applications ranging from fundamental physics to applied engineering research. Neutron radiography or tomography on the other hand, are useful tools in the non-destructive spatial imaging of materials or...
Gespeichert in:
Veröffentlicht in: | Physica. B, Condensed matter Condensed matter, 2004-07, Vol.350 (1), p.159-161 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 161 |
---|---|
container_issue | 1 |
container_start_page | 159 |
container_title | Physica. B, Condensed matter |
container_volume | 350 |
creator | Steuwer, A Santisteban, J.R Withers, P.J Edwards, L |
description | Neutron diffraction methods provide accurate quantitative insight into material properties with applications ranging from fundamental physics to applied engineering research. Neutron radiography or tomography on the other hand, are useful tools in the non-destructive spatial imaging of materials or engineering components, but are less accurate with respect to any quantitative analysis. It is possible to combine the advantages of diffraction and radiography using pulsed neutron transmission in a novel way. Using a pixellated detector at a time-of-flight source it is possible to collect 2D ‘images’ containing a great deal of interesting information in the thermal regime. This together with the unprecedented intensities available at spallation sources and improvements in computing power allow for a re-assessment of the transmission methods. It opens the possibility of simultaneous imaging of diverse material properties such as strain or temperature, as well as the variation in attenuation, and can assist in the determination of phase volume fraction. Spatial and time resolution (for dynamic experiment) are limited only by the detector technology and the intensity of the source. In this example, phase information contained in the cross-section is extracted from Bragg edges using an approach similar to pattern decomposition. |
doi_str_mv | 10.1016/j.physb.2004.04.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29542318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452604005794</els_id><sourcerecordid>29542318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-dcc76445ac70280200a6d436a5d970b2c9d4dc6655f4210063c6a1fe79eb2e5e3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLg-vELvPSit675atoePIj4BYIe9ByyyRSzdNOaSYX996a7gjeHgYGZ997MPEIuGF0yytT1ejl-bnG15JTK5ZysOSAL1tSi5ExUh2RBW85KWXF1TE4Q1zQHq9mCvL-ZlCCGwoEdNuOAPvkhFCa44msyIflkkv-Gcvw0CLlt-i16LHwoxqlHcEWAKcXMSNEE3HjETD8jR53J0_Pfeko-Hu7f757Kl9fH57vbl9JK3qTSWVsrKStja8obmo83ykmhTOXamq64bZ10Vqmq6iRnlCphlWEd1C2sOFQgTsnVXneMw9cEmHQ-wELfmwDDhJq3leSCNRko9kAbB8QInR6j35i41Yzq2UG91jsH9eygnnPHuvyVN2hN3-UPrcc_qqJMKDHjbvY4yL9-e4garYdgwfkINmk3-H_3_ABm_4mN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29542318</pqid></control><display><type>article</type><title>Pattern decomposition and quantitative-phase analysis in pulsed neutron transmission</title><source>Elsevier ScienceDirect Journals</source><creator>Steuwer, A ; Santisteban, J.R ; Withers, P.J ; Edwards, L</creator><creatorcontrib>Steuwer, A ; Santisteban, J.R ; Withers, P.J ; Edwards, L</creatorcontrib><description>Neutron diffraction methods provide accurate quantitative insight into material properties with applications ranging from fundamental physics to applied engineering research. Neutron radiography or tomography on the other hand, are useful tools in the non-destructive spatial imaging of materials or engineering components, but are less accurate with respect to any quantitative analysis. It is possible to combine the advantages of diffraction and radiography using pulsed neutron transmission in a novel way. Using a pixellated detector at a time-of-flight source it is possible to collect 2D ‘images’ containing a great deal of interesting information in the thermal regime. This together with the unprecedented intensities available at spallation sources and improvements in computing power allow for a re-assessment of the transmission methods. It opens the possibility of simultaneous imaging of diverse material properties such as strain or temperature, as well as the variation in attenuation, and can assist in the determination of phase volume fraction. Spatial and time resolution (for dynamic experiment) are limited only by the detector technology and the intensity of the source. In this example, phase information contained in the cross-section is extracted from Bragg edges using an approach similar to pattern decomposition.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2004.04.018</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bragg edge ; Cross-disciplinary physics: materials science; rheology ; Cross-section ; Exact sciences and technology ; Materials science ; Materials testing ; Methods of materials testing and analysis ; Physics ; Pulsed neutron transmission ; Quantitative-phase analysis</subject><ispartof>Physica. B, Condensed matter, 2004-07, Vol.350 (1), p.159-161</ispartof><rights>2004 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-dcc76445ac70280200a6d436a5d970b2c9d4dc6655f4210063c6a1fe79eb2e5e3</citedby><cites>FETCH-LOGICAL-c428t-dcc76445ac70280200a6d436a5d970b2c9d4dc6655f4210063c6a1fe79eb2e5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physb.2004.04.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3536,23910,23911,25119,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16013638$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Steuwer, A</creatorcontrib><creatorcontrib>Santisteban, J.R</creatorcontrib><creatorcontrib>Withers, P.J</creatorcontrib><creatorcontrib>Edwards, L</creatorcontrib><title>Pattern decomposition and quantitative-phase analysis in pulsed neutron transmission</title><title>Physica. B, Condensed matter</title><description>Neutron diffraction methods provide accurate quantitative insight into material properties with applications ranging from fundamental physics to applied engineering research. Neutron radiography or tomography on the other hand, are useful tools in the non-destructive spatial imaging of materials or engineering components, but are less accurate with respect to any quantitative analysis. It is possible to combine the advantages of diffraction and radiography using pulsed neutron transmission in a novel way. Using a pixellated detector at a time-of-flight source it is possible to collect 2D ‘images’ containing a great deal of interesting information in the thermal regime. This together with the unprecedented intensities available at spallation sources and improvements in computing power allow for a re-assessment of the transmission methods. It opens the possibility of simultaneous imaging of diverse material properties such as strain or temperature, as well as the variation in attenuation, and can assist in the determination of phase volume fraction. Spatial and time resolution (for dynamic experiment) are limited only by the detector technology and the intensity of the source. In this example, phase information contained in the cross-section is extracted from Bragg edges using an approach similar to pattern decomposition.</description><subject>Bragg edge</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Cross-section</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Materials testing</subject><subject>Methods of materials testing and analysis</subject><subject>Physics</subject><subject>Pulsed neutron transmission</subject><subject>Quantitative-phase analysis</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLg-vELvPSit675atoePIj4BYIe9ByyyRSzdNOaSYX996a7gjeHgYGZ997MPEIuGF0yytT1ejl-bnG15JTK5ZysOSAL1tSi5ExUh2RBW85KWXF1TE4Q1zQHq9mCvL-ZlCCGwoEdNuOAPvkhFCa44msyIflkkv-Gcvw0CLlt-i16LHwoxqlHcEWAKcXMSNEE3HjETD8jR53J0_Pfeko-Hu7f757Kl9fH57vbl9JK3qTSWVsrKStja8obmo83ykmhTOXamq64bZ10Vqmq6iRnlCphlWEd1C2sOFQgTsnVXneMw9cEmHQ-wELfmwDDhJq3leSCNRko9kAbB8QInR6j35i41Yzq2UG91jsH9eygnnPHuvyVN2hN3-UPrcc_qqJMKDHjbvY4yL9-e4garYdgwfkINmk3-H_3_ABm_4mN</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Steuwer, A</creator><creator>Santisteban, J.R</creator><creator>Withers, P.J</creator><creator>Edwards, L</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20040701</creationdate><title>Pattern decomposition and quantitative-phase analysis in pulsed neutron transmission</title><author>Steuwer, A ; Santisteban, J.R ; Withers, P.J ; Edwards, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-dcc76445ac70280200a6d436a5d970b2c9d4dc6655f4210063c6a1fe79eb2e5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bragg edge</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Cross-section</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Materials testing</topic><topic>Methods of materials testing and analysis</topic><topic>Physics</topic><topic>Pulsed neutron transmission</topic><topic>Quantitative-phase analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steuwer, A</creatorcontrib><creatorcontrib>Santisteban, J.R</creatorcontrib><creatorcontrib>Withers, P.J</creatorcontrib><creatorcontrib>Edwards, L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steuwer, A</au><au>Santisteban, J.R</au><au>Withers, P.J</au><au>Edwards, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern decomposition and quantitative-phase analysis in pulsed neutron transmission</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2004-07-01</date><risdate>2004</risdate><volume>350</volume><issue>1</issue><spage>159</spage><epage>161</epage><pages>159-161</pages><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>Neutron diffraction methods provide accurate quantitative insight into material properties with applications ranging from fundamental physics to applied engineering research. Neutron radiography or tomography on the other hand, are useful tools in the non-destructive spatial imaging of materials or engineering components, but are less accurate with respect to any quantitative analysis. It is possible to combine the advantages of diffraction and radiography using pulsed neutron transmission in a novel way. Using a pixellated detector at a time-of-flight source it is possible to collect 2D ‘images’ containing a great deal of interesting information in the thermal regime. This together with the unprecedented intensities available at spallation sources and improvements in computing power allow for a re-assessment of the transmission methods. It opens the possibility of simultaneous imaging of diverse material properties such as strain or temperature, as well as the variation in attenuation, and can assist in the determination of phase volume fraction. Spatial and time resolution (for dynamic experiment) are limited only by the detector technology and the intensity of the source. In this example, phase information contained in the cross-section is extracted from Bragg edges using an approach similar to pattern decomposition.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2004.04.018</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-4526 |
ispartof | Physica. B, Condensed matter, 2004-07, Vol.350 (1), p.159-161 |
issn | 0921-4526 1873-2135 |
language | eng |
recordid | cdi_proquest_miscellaneous_29542318 |
source | Elsevier ScienceDirect Journals |
subjects | Bragg edge Cross-disciplinary physics: materials science rheology Cross-section Exact sciences and technology Materials science Materials testing Methods of materials testing and analysis Physics Pulsed neutron transmission Quantitative-phase analysis |
title | Pattern decomposition and quantitative-phase analysis in pulsed neutron transmission |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern%20decomposition%20and%20quantitative-phase%20analysis%20in%20pulsed%20neutron%20transmission&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Steuwer,%20A&rft.date=2004-07-01&rft.volume=350&rft.issue=1&rft.spage=159&rft.epage=161&rft.pages=159-161&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2004.04.018&rft_dat=%3Cproquest_cross%3E29542318%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29542318&rft_id=info:pmid/&rft_els_id=S0921452604005794&rfr_iscdi=true |