Mechanical and tribological properties of PA66/PPS blend. III. Reinforced with GF

Based on previous work, 70 vol % PA66/30 vol % PPS blend was selected as a matrix, and the PA66/PPS blend reinforced with different content of glass fiber (GF) was prepared in this study. The mechanical properties of PA66/PPS/GF composites were studied, and the tribological behaviors were tested on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2006-10, Vol.102 (1), p.523-529
Hauptverfasser: Chen, Zhaobin, Liu, Xujun, Lü, Renguo, Li, Tongsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on previous work, 70 vol % PA66/30 vol % PPS blend was selected as a matrix, and the PA66/PPS blend reinforced with different content of glass fiber (GF) was prepared in this study. The mechanical properties of PA66/PPS/GF composites were studied, and the tribological behaviors were tested on block‐on‐ring sliding wear tester. The results showed that 20–30 vol % GF greatly increases the mechanical properties of PA66/PPS blend. When GF content is 20 vol %, the friction coefficient of composite is the lowest (0.35), which is decreased by 47% in comparison with the unfilled blend. The wear volume of the GF‐reinforced PA66/PPS blend composite decreases with the increase of GF content. However, the wear‐resistance is not apparently improved by the addition of GF in the experimental range for comparison with unfilled PA66/PPS blend. The worn surface and the transfer film on the counterface were examined by scanning electron microscopy (SEM). The observations revealed that the friction coefficient of composite depends on the formation and development of a transfer film. The wear mechanism involves polymer matrix wear and fiber wear. The former consists of melting wear and plastic deformation of the matrix, while the latter includes fiber sliding wear, cracking, rupturing, and pulverizing. The contributions of the matrix wear and the fiber wear determine the ultimate wear volume of PA66/PPS/GF composite. In addition, the abrasive action caused by the ruptured glass fiber is also a very important factor. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 523–529, 2006
ISSN:0021-8995
1097-4628
DOI:10.1002/app.24253