Quantitative Phase Field Modeling of Precipitation Processes
Phase Field modelling of microstructural evolution in alloys has already a long and successful history. One of the basics of the theory is the introduction of continuous fields (concentration, long‐range order parameters) that describe the local state of the alloy. These fields have a meaning only a...
Gespeichert in:
Veröffentlicht in: | Advanced engineering materials 2006-12, Vol.8 (12), p.1245-1248 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1248 |
---|---|
container_issue | 12 |
container_start_page | 1245 |
container_title | Advanced engineering materials |
container_volume | 8 |
creator | Bronchard, Q. Le Bouar, Y. Finel, A. |
description | Phase Field modelling of microstructural evolution in alloys has already a long and successful history. One of the basics of the theory is the introduction of continuous fields (concentration, long‐range order parameters) that describe the local state of the alloy. These fields have a meaning only at a mesoscopic scale. One consequence is that we can treat much larger systems than with microscopic methods such as Monte Carlo or molecular dynamics simulations. The aim of this work is to precisely analyse the status of the mesoscopic free energy densities that are used in Phase Field theories and, simultaneously, to clarify the form that the Phase Field equations should adopt. |
doi_str_mv | 10.1002/adem.200600226 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29536800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29536800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3886-ee459ad1bb6dd92d4d31091b1c60af07e4c44defb590ef6b6b322d3668161da23</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFavnnPRW-p-ZZOAl1LbqrS1giJ4WTa7E11Nk7qbqv33pqaoN08zA8_7DjwIHRPcIxjTM2Vg0aMYi-agYgd1SETjkAqe7DY7Z0lIRCT20YH3LxgTggnroPPblSprW6vavkMwf1YegpGFwgTTykBhy6egyoO5A22X31RVNlelwXvwh2gvV4WHo-3sovvR8G5wGU5uxleD_iTULElECMCjVBmSZcKYlBpuGMEpyYgWWOU4Bq45N5BnUYohF5nIGKWGCZEQQYyirItO296lq95W4Gu5sF5DUagSqpWXNI2YSDBuwF4Lald57yCXS2cXyq0lwXIjSW4kyR9JTeBk26y8VkXuVKmt_00lnG8sNlzach-2gPU_rbJ_MZz-_RG2Wetr-PzJKvcqRcziSD7MxvIxmV3PprOBJOwLMTCHNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29536800</pqid></control><display><type>article</type><title>Quantitative Phase Field Modeling of Precipitation Processes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bronchard, Q. ; Le Bouar, Y. ; Finel, A.</creator><creatorcontrib>Bronchard, Q. ; Le Bouar, Y. ; Finel, A.</creatorcontrib><description>Phase Field modelling of microstructural evolution in alloys has already a long and successful history. One of the basics of the theory is the introduction of continuous fields (concentration, long‐range order parameters) that describe the local state of the alloy. These fields have a meaning only at a mesoscopic scale. One consequence is that we can treat much larger systems than with microscopic methods such as Monte Carlo or molecular dynamics simulations. The aim of this work is to precisely analyse the status of the mesoscopic free energy densities that are used in Phase Field theories and, simultaneously, to clarify the form that the Phase Field equations should adopt.</description><identifier>ISSN: 1438-1656</identifier><identifier>EISSN: 1527-2648</identifier><identifier>DOI: 10.1002/adem.200600226</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Micro structure ; Modeling ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Precipitation</subject><ispartof>Advanced engineering materials, 2006-12, Vol.8 (12), p.1245-1248</ispartof><rights>Copyright © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3886-ee459ad1bb6dd92d4d31091b1c60af07e4c44defb590ef6b6b322d3668161da23</citedby><cites>FETCH-LOGICAL-c3886-ee459ad1bb6dd92d4d31091b1c60af07e4c44defb590ef6b6b322d3668161da23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadem.200600226$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadem.200600226$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18441527$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bronchard, Q.</creatorcontrib><creatorcontrib>Le Bouar, Y.</creatorcontrib><creatorcontrib>Finel, A.</creatorcontrib><title>Quantitative Phase Field Modeling of Precipitation Processes</title><title>Advanced engineering materials</title><addtitle>Adv. Eng. Mater</addtitle><description>Phase Field modelling of microstructural evolution in alloys has already a long and successful history. One of the basics of the theory is the introduction of continuous fields (concentration, long‐range order parameters) that describe the local state of the alloy. These fields have a meaning only at a mesoscopic scale. One consequence is that we can treat much larger systems than with microscopic methods such as Monte Carlo or molecular dynamics simulations. The aim of this work is to precisely analyse the status of the mesoscopic free energy densities that are used in Phase Field theories and, simultaneously, to clarify the form that the Phase Field equations should adopt.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Micro structure</subject><subject>Modeling</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Precipitation</subject><issn>1438-1656</issn><issn>1527-2648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFavnnPRW-p-ZZOAl1LbqrS1giJ4WTa7E11Nk7qbqv33pqaoN08zA8_7DjwIHRPcIxjTM2Vg0aMYi-agYgd1SETjkAqe7DY7Z0lIRCT20YH3LxgTggnroPPblSprW6vavkMwf1YegpGFwgTTykBhy6egyoO5A22X31RVNlelwXvwh2gvV4WHo-3sovvR8G5wGU5uxleD_iTULElECMCjVBmSZcKYlBpuGMEpyYgWWOU4Bq45N5BnUYohF5nIGKWGCZEQQYyirItO296lq95W4Gu5sF5DUagSqpWXNI2YSDBuwF4Lald57yCXS2cXyq0lwXIjSW4kyR9JTeBk26y8VkXuVKmt_00lnG8sNlzach-2gPU_rbJ_MZz-_RG2Wetr-PzJKvcqRcziSD7MxvIxmV3PprOBJOwLMTCHNg</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Bronchard, Q.</creator><creator>Le Bouar, Y.</creator><creator>Finel, A.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>200612</creationdate><title>Quantitative Phase Field Modeling of Precipitation Processes</title><author>Bronchard, Q. ; Le Bouar, Y. ; Finel, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3886-ee459ad1bb6dd92d4d31091b1c60af07e4c44defb590ef6b6b322d3668161da23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Micro structure</topic><topic>Modeling</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Precipitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bronchard, Q.</creatorcontrib><creatorcontrib>Le Bouar, Y.</creatorcontrib><creatorcontrib>Finel, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bronchard, Q.</au><au>Le Bouar, Y.</au><au>Finel, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Phase Field Modeling of Precipitation Processes</atitle><jtitle>Advanced engineering materials</jtitle><addtitle>Adv. Eng. Mater</addtitle><date>2006-12</date><risdate>2006</risdate><volume>8</volume><issue>12</issue><spage>1245</spage><epage>1248</epage><pages>1245-1248</pages><issn>1438-1656</issn><eissn>1527-2648</eissn><abstract>Phase Field modelling of microstructural evolution in alloys has already a long and successful history. One of the basics of the theory is the introduction of continuous fields (concentration, long‐range order parameters) that describe the local state of the alloy. These fields have a meaning only at a mesoscopic scale. One consequence is that we can treat much larger systems than with microscopic methods such as Monte Carlo or molecular dynamics simulations. The aim of this work is to precisely analyse the status of the mesoscopic free energy densities that are used in Phase Field theories and, simultaneously, to clarify the form that the Phase Field equations should adopt.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adem.200600226</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-1656 |
ispartof | Advanced engineering materials, 2006-12, Vol.8 (12), p.1245-1248 |
issn | 1438-1656 1527-2648 |
language | eng |
recordid | cdi_proquest_miscellaneous_29536800 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Cross-disciplinary physics: materials science rheology Exact sciences and technology Materials science Micro structure Modeling Phase diagrams and microstructures developed by solidification and solid-solid phase transformations Physics Precipitation |
title | Quantitative Phase Field Modeling of Precipitation Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T19%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Phase%20Field%20Modeling%20of%20Precipitation%20Processes&rft.jtitle=Advanced%20engineering%20materials&rft.au=Bronchard,%20Q.&rft.date=2006-12&rft.volume=8&rft.issue=12&rft.spage=1245&rft.epage=1248&rft.pages=1245-1248&rft.issn=1438-1656&rft.eissn=1527-2648&rft_id=info:doi/10.1002/adem.200600226&rft_dat=%3Cproquest_cross%3E29536800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29536800&rft_id=info:pmid/&rfr_iscdi=true |