Quantitative Phase Field Modeling of Precipitation Processes

Phase Field modelling of microstructural evolution in alloys has already a long and successful history. One of the basics of the theory is the introduction of continuous fields (concentration, long‐range order parameters) that describe the local state of the alloy. These fields have a meaning only a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced engineering materials 2006-12, Vol.8 (12), p.1245-1248
Hauptverfasser: Bronchard, Q., Le Bouar, Y., Finel, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1248
container_issue 12
container_start_page 1245
container_title Advanced engineering materials
container_volume 8
creator Bronchard, Q.
Le Bouar, Y.
Finel, A.
description Phase Field modelling of microstructural evolution in alloys has already a long and successful history. One of the basics of the theory is the introduction of continuous fields (concentration, long‐range order parameters) that describe the local state of the alloy. These fields have a meaning only at a mesoscopic scale. One consequence is that we can treat much larger systems than with microscopic methods such as Monte Carlo or molecular dynamics simulations. The aim of this work is to precisely analyse the status of the mesoscopic free energy densities that are used in Phase Field theories and, simultaneously, to clarify the form that the Phase Field equations should adopt.
doi_str_mv 10.1002/adem.200600226
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29536800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29536800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3886-ee459ad1bb6dd92d4d31091b1c60af07e4c44defb590ef6b6b322d3668161da23</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFavnnPRW-p-ZZOAl1LbqrS1giJ4WTa7E11Nk7qbqv33pqaoN08zA8_7DjwIHRPcIxjTM2Vg0aMYi-agYgd1SETjkAqe7DY7Z0lIRCT20YH3LxgTggnroPPblSprW6vavkMwf1YegpGFwgTTykBhy6egyoO5A22X31RVNlelwXvwh2gvV4WHo-3sovvR8G5wGU5uxleD_iTULElECMCjVBmSZcKYlBpuGMEpyYgWWOU4Bq45N5BnUYohF5nIGKWGCZEQQYyirItO296lq95W4Gu5sF5DUagSqpWXNI2YSDBuwF4Lald57yCXS2cXyq0lwXIjSW4kyR9JTeBk26y8VkXuVKmt_00lnG8sNlzach-2gPU_rbJ_MZz-_RG2Wetr-PzJKvcqRcziSD7MxvIxmV3PprOBJOwLMTCHNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29536800</pqid></control><display><type>article</type><title>Quantitative Phase Field Modeling of Precipitation Processes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bronchard, Q. ; Le Bouar, Y. ; Finel, A.</creator><creatorcontrib>Bronchard, Q. ; Le Bouar, Y. ; Finel, A.</creatorcontrib><description>Phase Field modelling of microstructural evolution in alloys has already a long and successful history. One of the basics of the theory is the introduction of continuous fields (concentration, long‐range order parameters) that describe the local state of the alloy. These fields have a meaning only at a mesoscopic scale. One consequence is that we can treat much larger systems than with microscopic methods such as Monte Carlo or molecular dynamics simulations. The aim of this work is to precisely analyse the status of the mesoscopic free energy densities that are used in Phase Field theories and, simultaneously, to clarify the form that the Phase Field equations should adopt.</description><identifier>ISSN: 1438-1656</identifier><identifier>EISSN: 1527-2648</identifier><identifier>DOI: 10.1002/adem.200600226</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Micro structure ; Modeling ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Precipitation</subject><ispartof>Advanced engineering materials, 2006-12, Vol.8 (12), p.1245-1248</ispartof><rights>Copyright © 2006 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3886-ee459ad1bb6dd92d4d31091b1c60af07e4c44defb590ef6b6b322d3668161da23</citedby><cites>FETCH-LOGICAL-c3886-ee459ad1bb6dd92d4d31091b1c60af07e4c44defb590ef6b6b322d3668161da23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadem.200600226$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadem.200600226$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18441527$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bronchard, Q.</creatorcontrib><creatorcontrib>Le Bouar, Y.</creatorcontrib><creatorcontrib>Finel, A.</creatorcontrib><title>Quantitative Phase Field Modeling of Precipitation Processes</title><title>Advanced engineering materials</title><addtitle>Adv. Eng. Mater</addtitle><description>Phase Field modelling of microstructural evolution in alloys has already a long and successful history. One of the basics of the theory is the introduction of continuous fields (concentration, long‐range order parameters) that describe the local state of the alloy. These fields have a meaning only at a mesoscopic scale. One consequence is that we can treat much larger systems than with microscopic methods such as Monte Carlo or molecular dynamics simulations. The aim of this work is to precisely analyse the status of the mesoscopic free energy densities that are used in Phase Field theories and, simultaneously, to clarify the form that the Phase Field equations should adopt.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Micro structure</subject><subject>Modeling</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Precipitation</subject><issn>1438-1656</issn><issn>1527-2648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFavnnPRW-p-ZZOAl1LbqrS1giJ4WTa7E11Nk7qbqv33pqaoN08zA8_7DjwIHRPcIxjTM2Vg0aMYi-agYgd1SETjkAqe7DY7Z0lIRCT20YH3LxgTggnroPPblSprW6vavkMwf1YegpGFwgTTykBhy6egyoO5A22X31RVNlelwXvwh2gvV4WHo-3sovvR8G5wGU5uxleD_iTULElECMCjVBmSZcKYlBpuGMEpyYgWWOU4Bq45N5BnUYohF5nIGKWGCZEQQYyirItO296lq95W4Gu5sF5DUagSqpWXNI2YSDBuwF4Lald57yCXS2cXyq0lwXIjSW4kyR9JTeBk26y8VkXuVKmt_00lnG8sNlzach-2gPU_rbJ_MZz-_RG2Wetr-PzJKvcqRcziSD7MxvIxmV3PprOBJOwLMTCHNg</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Bronchard, Q.</creator><creator>Le Bouar, Y.</creator><creator>Finel, A.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>200612</creationdate><title>Quantitative Phase Field Modeling of Precipitation Processes</title><author>Bronchard, Q. ; Le Bouar, Y. ; Finel, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3886-ee459ad1bb6dd92d4d31091b1c60af07e4c44defb590ef6b6b322d3668161da23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Micro structure</topic><topic>Modeling</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Precipitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bronchard, Q.</creatorcontrib><creatorcontrib>Le Bouar, Y.</creatorcontrib><creatorcontrib>Finel, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bronchard, Q.</au><au>Le Bouar, Y.</au><au>Finel, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Phase Field Modeling of Precipitation Processes</atitle><jtitle>Advanced engineering materials</jtitle><addtitle>Adv. Eng. Mater</addtitle><date>2006-12</date><risdate>2006</risdate><volume>8</volume><issue>12</issue><spage>1245</spage><epage>1248</epage><pages>1245-1248</pages><issn>1438-1656</issn><eissn>1527-2648</eissn><abstract>Phase Field modelling of microstructural evolution in alloys has already a long and successful history. One of the basics of the theory is the introduction of continuous fields (concentration, long‐range order parameters) that describe the local state of the alloy. These fields have a meaning only at a mesoscopic scale. One consequence is that we can treat much larger systems than with microscopic methods such as Monte Carlo or molecular dynamics simulations. The aim of this work is to precisely analyse the status of the mesoscopic free energy densities that are used in Phase Field theories and, simultaneously, to clarify the form that the Phase Field equations should adopt.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adem.200600226</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1438-1656
ispartof Advanced engineering materials, 2006-12, Vol.8 (12), p.1245-1248
issn 1438-1656
1527-2648
language eng
recordid cdi_proquest_miscellaneous_29536800
source Wiley Online Library Journals Frontfile Complete
subjects Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Materials science
Micro structure
Modeling
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Physics
Precipitation
title Quantitative Phase Field Modeling of Precipitation Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T19%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Phase%20Field%20Modeling%20of%20Precipitation%20Processes&rft.jtitle=Advanced%20engineering%20materials&rft.au=Bronchard,%20Q.&rft.date=2006-12&rft.volume=8&rft.issue=12&rft.spage=1245&rft.epage=1248&rft.pages=1245-1248&rft.issn=1438-1656&rft.eissn=1527-2648&rft_id=info:doi/10.1002/adem.200600226&rft_dat=%3Cproquest_cross%3E29536800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29536800&rft_id=info:pmid/&rfr_iscdi=true