Correlation for the Carbon Dioxide and Water Mixture Based on The Lemmon–Jacobsen Mixture Model and the Peng–Robinson Equation of State
Models representing the thermodynamic behavior of the CO2-H2O mixture have been developed. The single-phase model is based upon the thermodynamic property mixture model proposed by Lemmon and Jacobsen. The model represents the single-phase vapor states over the temperature range of 323-1074 K, up to...
Gespeichert in:
Veröffentlicht in: | International journal of thermophysics 2006-09, Vol.27 (5), p.1373-1386 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1386 |
---|---|
container_issue | 5 |
container_start_page | 1373 |
container_title | International journal of thermophysics |
container_volume | 27 |
creator | Paulus, M. E. Penoncello, S. G. |
description | Models representing the thermodynamic behavior of the CO2-H2O mixture have been developed. The single-phase model is based upon the thermodynamic property mixture model proposed by Lemmon and Jacobsen. The model represents the single-phase vapor states over the temperature range of 323-1074 K, up to a pressure of 100 MPa over the entire composition range. The experimental data used to develop these formulations include pressure-density-temperature-composition, second virial coefficients, and excess enthalpy. A nonlinear regression algorithm was used to determine the various adjustable parameters of the model. The model can be used to compute density values of the mixture to within +/-0.1%. Due to a lack of single-phase liquid data for the mixture, the Peng-Robinson equation of state (PREOS) was used to predict the vapor-liquid equilibrium (VLE) properties of the mixture. Comparisons of values computed from the Peng-Robinson VLE predictions using standard binary interaction parameters to experimental data are presented to verify the accuracy of this calculation. The VLE calculation is shown to be accurate to within +/-3 K in temperature over a temperature range of 323-624 K up to 20 MPa. The accuracy from 20 to 100 MPa is +/-3 K up to +/-30 K in temperature, being worse for higher pressures. Bubble-point mole fractions can be determined within +/-0.05 for CO2. |
doi_str_mv | 10.1007/s10765-006-0123-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29530287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29530287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-65452fc8fe9673f694b7070c7563519bfa6da825152430bd149b00a5694fefcb3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEuXxAey8YhcYO7VdL6GUl4pAPAQ7y0nGEJTG1E6ksmPPkj_kS3ApYjW60rl3pEPIHoMDBqAOIwMlRQYgM2A8z8QaGTCheKaFVOtkAEyLTPPR0ybZivEVALTS-YB8jn0I2Niu9i11PtDuBenYhiLFk9ov6gqpbSv6aDsM9KpedH1AemwjVjQh94me4mzm2--Pr0tb-iJi-49d-Qqb3_py9Qbb50Td-qJuY-pO5v3qrXf0rkv7O2TD2Sbi7t_dJg-nk_vxeTa9PrsYH02zkivZZVIMBXflyKGWKndSDwsFCkolZC6YLpyVlR1xwQQf5lBUbKgLACsS6NCVRb5N9le7b8HPe4ydmdWxxKaxLfo-Gq5FDnykEshWYBl8jAGdeQv1zIZ3w8AstZuVdpO0m6V2I_IfD1R4dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29530287</pqid></control><display><type>article</type><title>Correlation for the Carbon Dioxide and Water Mixture Based on The Lemmon–Jacobsen Mixture Model and the Peng–Robinson Equation of State</title><source>SpringerNature Journals</source><creator>Paulus, M. E. ; Penoncello, S. G.</creator><creatorcontrib>Paulus, M. E. ; Penoncello, S. G.</creatorcontrib><description>Models representing the thermodynamic behavior of the CO2-H2O mixture have been developed. The single-phase model is based upon the thermodynamic property mixture model proposed by Lemmon and Jacobsen. The model represents the single-phase vapor states over the temperature range of 323-1074 K, up to a pressure of 100 MPa over the entire composition range. The experimental data used to develop these formulations include pressure-density-temperature-composition, second virial coefficients, and excess enthalpy. A nonlinear regression algorithm was used to determine the various adjustable parameters of the model. The model can be used to compute density values of the mixture to within +/-0.1%. Due to a lack of single-phase liquid data for the mixture, the Peng-Robinson equation of state (PREOS) was used to predict the vapor-liquid equilibrium (VLE) properties of the mixture. Comparisons of values computed from the Peng-Robinson VLE predictions using standard binary interaction parameters to experimental data are presented to verify the accuracy of this calculation. The VLE calculation is shown to be accurate to within +/-3 K in temperature over a temperature range of 323-624 K up to 20 MPa. The accuracy from 20 to 100 MPa is +/-3 K up to +/-30 K in temperature, being worse for higher pressures. Bubble-point mole fractions can be determined within +/-0.05 for CO2.</description><identifier>ISSN: 0195-928X</identifier><identifier>EISSN: 1572-9567</identifier><identifier>DOI: 10.1007/s10765-006-0123-5</identifier><language>eng</language><ispartof>International journal of thermophysics, 2006-09, Vol.27 (5), p.1373-1386</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c276t-65452fc8fe9673f694b7070c7563519bfa6da825152430bd149b00a5694fefcb3</citedby><cites>FETCH-LOGICAL-c276t-65452fc8fe9673f694b7070c7563519bfa6da825152430bd149b00a5694fefcb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Paulus, M. E.</creatorcontrib><creatorcontrib>Penoncello, S. G.</creatorcontrib><title>Correlation for the Carbon Dioxide and Water Mixture Based on The Lemmon–Jacobsen Mixture Model and the Peng–Robinson Equation of State</title><title>International journal of thermophysics</title><description>Models representing the thermodynamic behavior of the CO2-H2O mixture have been developed. The single-phase model is based upon the thermodynamic property mixture model proposed by Lemmon and Jacobsen. The model represents the single-phase vapor states over the temperature range of 323-1074 K, up to a pressure of 100 MPa over the entire composition range. The experimental data used to develop these formulations include pressure-density-temperature-composition, second virial coefficients, and excess enthalpy. A nonlinear regression algorithm was used to determine the various adjustable parameters of the model. The model can be used to compute density values of the mixture to within +/-0.1%. Due to a lack of single-phase liquid data for the mixture, the Peng-Robinson equation of state (PREOS) was used to predict the vapor-liquid equilibrium (VLE) properties of the mixture. Comparisons of values computed from the Peng-Robinson VLE predictions using standard binary interaction parameters to experimental data are presented to verify the accuracy of this calculation. The VLE calculation is shown to be accurate to within +/-3 K in temperature over a temperature range of 323-624 K up to 20 MPa. The accuracy from 20 to 100 MPa is +/-3 K up to +/-30 K in temperature, being worse for higher pressures. Bubble-point mole fractions can be determined within +/-0.05 for CO2.</description><issn>0195-928X</issn><issn>1572-9567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEuXxAey8YhcYO7VdL6GUl4pAPAQ7y0nGEJTG1E6ksmPPkj_kS3ApYjW60rl3pEPIHoMDBqAOIwMlRQYgM2A8z8QaGTCheKaFVOtkAEyLTPPR0ybZivEVALTS-YB8jn0I2Niu9i11PtDuBenYhiLFk9ov6gqpbSv6aDsM9KpedH1AemwjVjQh94me4mzm2--Pr0tb-iJi-49d-Qqb3_py9Qbb50Td-qJuY-pO5v3qrXf0rkv7O2TD2Sbi7t_dJg-nk_vxeTa9PrsYH02zkivZZVIMBXflyKGWKndSDwsFCkolZC6YLpyVlR1xwQQf5lBUbKgLACsS6NCVRb5N9le7b8HPe4ydmdWxxKaxLfo-Gq5FDnykEshWYBl8jAGdeQv1zIZ3w8AstZuVdpO0m6V2I_IfD1R4dA</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Paulus, M. E.</creator><creator>Penoncello, S. G.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20060901</creationdate><title>Correlation for the Carbon Dioxide and Water Mixture Based on The Lemmon–Jacobsen Mixture Model and the Peng–Robinson Equation of State</title><author>Paulus, M. E. ; Penoncello, S. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-65452fc8fe9673f694b7070c7563519bfa6da825152430bd149b00a5694fefcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paulus, M. E.</creatorcontrib><creatorcontrib>Penoncello, S. G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paulus, M. E.</au><au>Penoncello, S. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation for the Carbon Dioxide and Water Mixture Based on The Lemmon–Jacobsen Mixture Model and the Peng–Robinson Equation of State</atitle><jtitle>International journal of thermophysics</jtitle><date>2006-09-01</date><risdate>2006</risdate><volume>27</volume><issue>5</issue><spage>1373</spage><epage>1386</epage><pages>1373-1386</pages><issn>0195-928X</issn><eissn>1572-9567</eissn><abstract>Models representing the thermodynamic behavior of the CO2-H2O mixture have been developed. The single-phase model is based upon the thermodynamic property mixture model proposed by Lemmon and Jacobsen. The model represents the single-phase vapor states over the temperature range of 323-1074 K, up to a pressure of 100 MPa over the entire composition range. The experimental data used to develop these formulations include pressure-density-temperature-composition, second virial coefficients, and excess enthalpy. A nonlinear regression algorithm was used to determine the various adjustable parameters of the model. The model can be used to compute density values of the mixture to within +/-0.1%. Due to a lack of single-phase liquid data for the mixture, the Peng-Robinson equation of state (PREOS) was used to predict the vapor-liquid equilibrium (VLE) properties of the mixture. Comparisons of values computed from the Peng-Robinson VLE predictions using standard binary interaction parameters to experimental data are presented to verify the accuracy of this calculation. The VLE calculation is shown to be accurate to within +/-3 K in temperature over a temperature range of 323-624 K up to 20 MPa. The accuracy from 20 to 100 MPa is +/-3 K up to +/-30 K in temperature, being worse for higher pressures. Bubble-point mole fractions can be determined within +/-0.05 for CO2.</abstract><doi>10.1007/s10765-006-0123-5</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0195-928X |
ispartof | International journal of thermophysics, 2006-09, Vol.27 (5), p.1373-1386 |
issn | 0195-928X 1572-9567 |
language | eng |
recordid | cdi_proquest_miscellaneous_29530287 |
source | SpringerNature Journals |
title | Correlation for the Carbon Dioxide and Water Mixture Based on The Lemmon–Jacobsen Mixture Model and the Peng–Robinson Equation of State |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20for%20the%20Carbon%20Dioxide%20and%20Water%20Mixture%20Based%20on%20The%20Lemmon%E2%80%93Jacobsen%20Mixture%20Model%20and%20the%20Peng%E2%80%93Robinson%20Equation%20of%20State&rft.jtitle=International%20journal%20of%20thermophysics&rft.au=Paulus,%20M.%20E.&rft.date=2006-09-01&rft.volume=27&rft.issue=5&rft.spage=1373&rft.epage=1386&rft.pages=1373-1386&rft.issn=0195-928X&rft.eissn=1572-9567&rft_id=info:doi/10.1007/s10765-006-0123-5&rft_dat=%3Cproquest_cross%3E29530287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29530287&rft_id=info:pmid/&rfr_iscdi=true |