Automatic Text Categorization in Terms of Genre and Author
The two main factors that characterize a text are its content and its style, and both can be used as a means of categorization. In this paper we present an approach to text categorization in terms of genre and author for Modern Greek. In contrast to previous stylometric approaches, we attempt to tak...
Gespeichert in:
Veröffentlicht in: | Computational linguistics - Association for Computational Linguistics 2000-12, Vol.26 (4), p.471-495 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 495 |
---|---|
container_issue | 4 |
container_start_page | 471 |
container_title | Computational linguistics - Association for Computational Linguistics |
container_volume | 26 |
creator | Stamatatos, Efstathios Fakotakis, Nikos Kokkinakis, George |
description | The two main factors that characterize a text are its content and its style, and both can be used as a means of categorization. In this paper we present an approach to text categorization in terms of genre and author for Modern Greek. In contrast to previous stylometric approaches, we attempt to take full advantage of existing natural language processing (NLP) tools. To this end, we propose a set of style markers including analysis-level measures that represent the way in which the input text has been analyzed and capture useful stylistic information without additional cost. We present a set of small-scale but reasonable experiments in text genre detection, author identification, and author verification tasks and show that the proposed method performs better than the most popular distributional lexical measures, i.e., functions of vocabulary richness and frequencies of occurrence of the most frequent words. All the presented experiments are based on unrestricted text downloaded from the World Wide Web without any manual text preprocessing or text sampling. Various performance issues regarding the training set size and the significance of the proposed style markers are discussed. Our system can be used in any application that requires fast and easily adaptable text categorization in terms of stylistically homogeneous categories. Moreover, the procedure of defining analysis-level markers can be followed in order to extract useful stylistic information using existing text processing tools. |
doi_str_mv | 10.1162/089120100750105920 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_29525993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_806a9acf86f84f35aa46d3191ed3e645</doaj_id><sourcerecordid>29525993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-68cd1406822a6249c076947f2b2cbd49cc59da28b3ac8cc927888e608bf557fd3</originalsourceid><addsrcrecordid>eNqFkUtLxTAQhYMoeH38AVfd6K6adxN3l4svENzoOkzTRHtpm2vSgvrrjVZ0Iehmwhy-c5jMIHRE8Ckhkp5hpQnFBONK5Co0xVtoQQTDpWaEbqPFB1BmotpFeymtcSYxqxbofDmNoYextcW9exmLFYzuMcT2LUthKNohy7FPRfDFlRuiK2Boiux5CvEA7Xjokjv8evfRw-XF_eq6vL27ulktb0vLlRpLqWxDOJaKUpCUa4srqXnlaU1t3eTeCt0AVTUDq6zVtFJKOYlV7YWofMP20c2c2wRYm01se4ivJkBrPoUQHw3E_IHOGYUlaLBeSa-4ZwKAy4YRTVzDnOQiZ53MWZsYnieXRtO3ybqug8GFKRklBCeEqX9BqgUVWrMM0hm0MaQUnf-ekGDzcRvz-zbZdPyVDslC5yMMtk0_Tp75vIXMnc5c345mHaY45EX_FfwObEmYsg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29525993</pqid></control><display><type>article</type><title>Automatic Text Categorization in Terms of Genre and Author</title><source>Alma/SFX Local Collection</source><creator>Stamatatos, Efstathios ; Fakotakis, Nikos ; Kokkinakis, George</creator><creatorcontrib>Stamatatos, Efstathios ; Fakotakis, Nikos ; Kokkinakis, George</creatorcontrib><description>The two main factors that characterize a text are its content and its style, and both can be used as a means of categorization. In this paper we present an approach to text categorization in terms of genre and author for Modern Greek. In contrast to previous stylometric approaches, we attempt to take full advantage of existing natural language processing (NLP) tools. To this end, we propose a set of style markers including analysis-level measures that represent the way in which the input text has been analyzed and capture useful stylistic information without additional cost. We present a set of small-scale but reasonable experiments in text genre detection, author identification, and author verification tasks and show that the proposed method performs better than the most popular distributional lexical measures, i.e., functions of vocabulary richness and frequencies of occurrence of the most frequent words. All the presented experiments are based on unrestricted text downloaded from the World Wide Web without any manual text preprocessing or text sampling. Various performance issues regarding the training set size and the significance of the proposed style markers are discussed. Our system can be used in any application that requires fast and easily adaptable text categorization in terms of stylistically homogeneous categories. Moreover, the procedure of defining analysis-level markers can be followed in order to extract useful stylistic information using existing text processing tools.</description><identifier>ISSN: 0891-2017</identifier><identifier>EISSN: 1530-9312</identifier><identifier>DOI: 10.1162/089120100750105920</identifier><identifier>CODEN: AJCLD9</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Applied linguistics ; Computational linguistics ; Linguistics</subject><ispartof>Computational linguistics - Association for Computational Linguistics, 2000-12, Vol.26 (4), p.471-495</ispartof><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-68cd1406822a6249c076947f2b2cbd49cc59da28b3ac8cc927888e608bf557fd3</citedby><cites>FETCH-LOGICAL-c488t-68cd1406822a6249c076947f2b2cbd49cc59da28b3ac8cc927888e608bf557fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14201888$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stamatatos, Efstathios</creatorcontrib><creatorcontrib>Fakotakis, Nikos</creatorcontrib><creatorcontrib>Kokkinakis, George</creatorcontrib><title>Automatic Text Categorization in Terms of Genre and Author</title><title>Computational linguistics - Association for Computational Linguistics</title><description>The two main factors that characterize a text are its content and its style, and both can be used as a means of categorization. In this paper we present an approach to text categorization in terms of genre and author for Modern Greek. In contrast to previous stylometric approaches, we attempt to take full advantage of existing natural language processing (NLP) tools. To this end, we propose a set of style markers including analysis-level measures that represent the way in which the input text has been analyzed and capture useful stylistic information without additional cost. We present a set of small-scale but reasonable experiments in text genre detection, author identification, and author verification tasks and show that the proposed method performs better than the most popular distributional lexical measures, i.e., functions of vocabulary richness and frequencies of occurrence of the most frequent words. All the presented experiments are based on unrestricted text downloaded from the World Wide Web without any manual text preprocessing or text sampling. Various performance issues regarding the training set size and the significance of the proposed style markers are discussed. Our system can be used in any application that requires fast and easily adaptable text categorization in terms of stylistically homogeneous categories. Moreover, the procedure of defining analysis-level markers can be followed in order to extract useful stylistic information using existing text processing tools.</description><subject>Applied linguistics</subject><subject>Computational linguistics</subject><subject>Linguistics</subject><issn>0891-2017</issn><issn>1530-9312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkUtLxTAQhYMoeH38AVfd6K6adxN3l4svENzoOkzTRHtpm2vSgvrrjVZ0Iehmwhy-c5jMIHRE8Ckhkp5hpQnFBONK5Co0xVtoQQTDpWaEbqPFB1BmotpFeymtcSYxqxbofDmNoYextcW9exmLFYzuMcT2LUthKNohy7FPRfDFlRuiK2Boiux5CvEA7Xjokjv8evfRw-XF_eq6vL27ulktb0vLlRpLqWxDOJaKUpCUa4srqXnlaU1t3eTeCt0AVTUDq6zVtFJKOYlV7YWofMP20c2c2wRYm01se4ivJkBrPoUQHw3E_IHOGYUlaLBeSa-4ZwKAy4YRTVzDnOQiZ53MWZsYnieXRtO3ybqug8GFKRklBCeEqX9BqgUVWrMM0hm0MaQUnf-ekGDzcRvz-zbZdPyVDslC5yMMtk0_Tp75vIXMnc5c345mHaY45EX_FfwObEmYsg</recordid><startdate>20001201</startdate><enddate>20001201</enddate><creator>Stamatatos, Efstathios</creator><creator>Fakotakis, Nikos</creator><creator>Kokkinakis, George</creator><general>MIT Press</general><general>The MIT Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7T9</scope><scope>DOA</scope></search><sort><creationdate>20001201</creationdate><title>Automatic Text Categorization in Terms of Genre and Author</title><author>Stamatatos, Efstathios ; Fakotakis, Nikos ; Kokkinakis, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-68cd1406822a6249c076947f2b2cbd49cc59da28b3ac8cc927888e608bf557fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied linguistics</topic><topic>Computational linguistics</topic><topic>Linguistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stamatatos, Efstathios</creatorcontrib><creatorcontrib>Fakotakis, Nikos</creatorcontrib><creatorcontrib>Kokkinakis, George</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Computational linguistics - Association for Computational Linguistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stamatatos, Efstathios</au><au>Fakotakis, Nikos</au><au>Kokkinakis, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Text Categorization in Terms of Genre and Author</atitle><jtitle>Computational linguistics - Association for Computational Linguistics</jtitle><date>2000-12-01</date><risdate>2000</risdate><volume>26</volume><issue>4</issue><spage>471</spage><epage>495</epage><pages>471-495</pages><issn>0891-2017</issn><eissn>1530-9312</eissn><coden>AJCLD9</coden><abstract>The two main factors that characterize a text are its content and its style, and both can be used as a means of categorization. In this paper we present an approach to text categorization in terms of genre and author for Modern Greek. In contrast to previous stylometric approaches, we attempt to take full advantage of existing natural language processing (NLP) tools. To this end, we propose a set of style markers including analysis-level measures that represent the way in which the input text has been analyzed and capture useful stylistic information without additional cost. We present a set of small-scale but reasonable experiments in text genre detection, author identification, and author verification tasks and show that the proposed method performs better than the most popular distributional lexical measures, i.e., functions of vocabulary richness and frequencies of occurrence of the most frequent words. All the presented experiments are based on unrestricted text downloaded from the World Wide Web without any manual text preprocessing or text sampling. Various performance issues regarding the training set size and the significance of the proposed style markers are discussed. Our system can be used in any application that requires fast and easily adaptable text categorization in terms of stylistically homogeneous categories. Moreover, the procedure of defining analysis-level markers can be followed in order to extract useful stylistic information using existing text processing tools.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><doi>10.1162/089120100750105920</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0891-2017 |
ispartof | Computational linguistics - Association for Computational Linguistics, 2000-12, Vol.26 (4), p.471-495 |
issn | 0891-2017 1530-9312 |
language | eng |
recordid | cdi_proquest_miscellaneous_29525993 |
source | Alma/SFX Local Collection |
subjects | Applied linguistics Computational linguistics Linguistics |
title | Automatic Text Categorization in Terms of Genre and Author |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A07%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Text%20Categorization%20in%20Terms%20of%20Genre%20and%20Author&rft.jtitle=Computational%20linguistics%20-%20Association%20for%20Computational%20Linguistics&rft.au=Stamatatos,%20Efstathios&rft.date=2000-12-01&rft.volume=26&rft.issue=4&rft.spage=471&rft.epage=495&rft.pages=471-495&rft.issn=0891-2017&rft.eissn=1530-9312&rft.coden=AJCLD9&rft_id=info:doi/10.1162/089120100750105920&rft_dat=%3Cproquest_pasca%3E29525993%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29525993&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_806a9acf86f84f35aa46d3191ed3e645&rfr_iscdi=true |