Automatic Text Categorization in Terms of Genre and Author

The two main factors that characterize a text are its content and its style, and both can be used as a means of categorization. In this paper we present an approach to text categorization in terms of genre and author for Modern Greek. In contrast to previous stylometric approaches, we attempt to tak...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational linguistics - Association for Computational Linguistics 2000-12, Vol.26 (4), p.471-495
Hauptverfasser: Stamatatos, Efstathios, Fakotakis, Nikos, Kokkinakis, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 495
container_issue 4
container_start_page 471
container_title Computational linguistics - Association for Computational Linguistics
container_volume 26
creator Stamatatos, Efstathios
Fakotakis, Nikos
Kokkinakis, George
description The two main factors that characterize a text are its content and its style, and both can be used as a means of categorization. In this paper we present an approach to text categorization in terms of genre and author for Modern Greek. In contrast to previous stylometric approaches, we attempt to take full advantage of existing natural language processing (NLP) tools. To this end, we propose a set of style markers including analysis-level measures that represent the way in which the input text has been analyzed and capture useful stylistic information without additional cost. We present a set of small-scale but reasonable experiments in text genre detection, author identification, and author verification tasks and show that the proposed method performs better than the most popular distributional lexical measures, i.e., functions of vocabulary richness and frequencies of occurrence of the most frequent words. All the presented experiments are based on unrestricted text downloaded from the World Wide Web without any manual text preprocessing or text sampling. Various performance issues regarding the training set size and the significance of the proposed style markers are discussed. Our system can be used in any application that requires fast and easily adaptable text categorization in terms of stylistically homogeneous categories. Moreover, the procedure of defining analysis-level markers can be followed in order to extract useful stylistic information using existing text processing tools.
doi_str_mv 10.1162/089120100750105920
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_29525993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_806a9acf86f84f35aa46d3191ed3e645</doaj_id><sourcerecordid>29525993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-68cd1406822a6249c076947f2b2cbd49cc59da28b3ac8cc927888e608bf557fd3</originalsourceid><addsrcrecordid>eNqFkUtLxTAQhYMoeH38AVfd6K6adxN3l4svENzoOkzTRHtpm2vSgvrrjVZ0Iehmwhy-c5jMIHRE8Ckhkp5hpQnFBONK5Co0xVtoQQTDpWaEbqPFB1BmotpFeymtcSYxqxbofDmNoYextcW9exmLFYzuMcT2LUthKNohy7FPRfDFlRuiK2Boiux5CvEA7Xjokjv8evfRw-XF_eq6vL27ulktb0vLlRpLqWxDOJaKUpCUa4srqXnlaU1t3eTeCt0AVTUDq6zVtFJKOYlV7YWofMP20c2c2wRYm01se4ivJkBrPoUQHw3E_IHOGYUlaLBeSa-4ZwKAy4YRTVzDnOQiZ53MWZsYnieXRtO3ybqug8GFKRklBCeEqX9BqgUVWrMM0hm0MaQUnf-ekGDzcRvz-zbZdPyVDslC5yMMtk0_Tp75vIXMnc5c345mHaY45EX_FfwObEmYsg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29525993</pqid></control><display><type>article</type><title>Automatic Text Categorization in Terms of Genre and Author</title><source>Alma/SFX Local Collection</source><creator>Stamatatos, Efstathios ; Fakotakis, Nikos ; Kokkinakis, George</creator><creatorcontrib>Stamatatos, Efstathios ; Fakotakis, Nikos ; Kokkinakis, George</creatorcontrib><description>The two main factors that characterize a text are its content and its style, and both can be used as a means of categorization. In this paper we present an approach to text categorization in terms of genre and author for Modern Greek. In contrast to previous stylometric approaches, we attempt to take full advantage of existing natural language processing (NLP) tools. To this end, we propose a set of style markers including analysis-level measures that represent the way in which the input text has been analyzed and capture useful stylistic information without additional cost. We present a set of small-scale but reasonable experiments in text genre detection, author identification, and author verification tasks and show that the proposed method performs better than the most popular distributional lexical measures, i.e., functions of vocabulary richness and frequencies of occurrence of the most frequent words. All the presented experiments are based on unrestricted text downloaded from the World Wide Web without any manual text preprocessing or text sampling. Various performance issues regarding the training set size and the significance of the proposed style markers are discussed. Our system can be used in any application that requires fast and easily adaptable text categorization in terms of stylistically homogeneous categories. Moreover, the procedure of defining analysis-level markers can be followed in order to extract useful stylistic information using existing text processing tools.</description><identifier>ISSN: 0891-2017</identifier><identifier>EISSN: 1530-9312</identifier><identifier>DOI: 10.1162/089120100750105920</identifier><identifier>CODEN: AJCLD9</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Applied linguistics ; Computational linguistics ; Linguistics</subject><ispartof>Computational linguistics - Association for Computational Linguistics, 2000-12, Vol.26 (4), p.471-495</ispartof><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-68cd1406822a6249c076947f2b2cbd49cc59da28b3ac8cc927888e608bf557fd3</citedby><cites>FETCH-LOGICAL-c488t-68cd1406822a6249c076947f2b2cbd49cc59da28b3ac8cc927888e608bf557fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14201888$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stamatatos, Efstathios</creatorcontrib><creatorcontrib>Fakotakis, Nikos</creatorcontrib><creatorcontrib>Kokkinakis, George</creatorcontrib><title>Automatic Text Categorization in Terms of Genre and Author</title><title>Computational linguistics - Association for Computational Linguistics</title><description>The two main factors that characterize a text are its content and its style, and both can be used as a means of categorization. In this paper we present an approach to text categorization in terms of genre and author for Modern Greek. In contrast to previous stylometric approaches, we attempt to take full advantage of existing natural language processing (NLP) tools. To this end, we propose a set of style markers including analysis-level measures that represent the way in which the input text has been analyzed and capture useful stylistic information without additional cost. We present a set of small-scale but reasonable experiments in text genre detection, author identification, and author verification tasks and show that the proposed method performs better than the most popular distributional lexical measures, i.e., functions of vocabulary richness and frequencies of occurrence of the most frequent words. All the presented experiments are based on unrestricted text downloaded from the World Wide Web without any manual text preprocessing or text sampling. Various performance issues regarding the training set size and the significance of the proposed style markers are discussed. Our system can be used in any application that requires fast and easily adaptable text categorization in terms of stylistically homogeneous categories. Moreover, the procedure of defining analysis-level markers can be followed in order to extract useful stylistic information using existing text processing tools.</description><subject>Applied linguistics</subject><subject>Computational linguistics</subject><subject>Linguistics</subject><issn>0891-2017</issn><issn>1530-9312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkUtLxTAQhYMoeH38AVfd6K6adxN3l4svENzoOkzTRHtpm2vSgvrrjVZ0Iehmwhy-c5jMIHRE8Ckhkp5hpQnFBONK5Co0xVtoQQTDpWaEbqPFB1BmotpFeymtcSYxqxbofDmNoYextcW9exmLFYzuMcT2LUthKNohy7FPRfDFlRuiK2Boiux5CvEA7Xjokjv8evfRw-XF_eq6vL27ulktb0vLlRpLqWxDOJaKUpCUa4srqXnlaU1t3eTeCt0AVTUDq6zVtFJKOYlV7YWofMP20c2c2wRYm01se4ivJkBrPoUQHw3E_IHOGYUlaLBeSa-4ZwKAy4YRTVzDnOQiZ53MWZsYnieXRtO3ybqug8GFKRklBCeEqX9BqgUVWrMM0hm0MaQUnf-ekGDzcRvz-zbZdPyVDslC5yMMtk0_Tp75vIXMnc5c345mHaY45EX_FfwObEmYsg</recordid><startdate>20001201</startdate><enddate>20001201</enddate><creator>Stamatatos, Efstathios</creator><creator>Fakotakis, Nikos</creator><creator>Kokkinakis, George</creator><general>MIT Press</general><general>The MIT Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7T9</scope><scope>DOA</scope></search><sort><creationdate>20001201</creationdate><title>Automatic Text Categorization in Terms of Genre and Author</title><author>Stamatatos, Efstathios ; Fakotakis, Nikos ; Kokkinakis, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-68cd1406822a6249c076947f2b2cbd49cc59da28b3ac8cc927888e608bf557fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied linguistics</topic><topic>Computational linguistics</topic><topic>Linguistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stamatatos, Efstathios</creatorcontrib><creatorcontrib>Fakotakis, Nikos</creatorcontrib><creatorcontrib>Kokkinakis, George</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Computational linguistics - Association for Computational Linguistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stamatatos, Efstathios</au><au>Fakotakis, Nikos</au><au>Kokkinakis, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Text Categorization in Terms of Genre and Author</atitle><jtitle>Computational linguistics - Association for Computational Linguistics</jtitle><date>2000-12-01</date><risdate>2000</risdate><volume>26</volume><issue>4</issue><spage>471</spage><epage>495</epage><pages>471-495</pages><issn>0891-2017</issn><eissn>1530-9312</eissn><coden>AJCLD9</coden><abstract>The two main factors that characterize a text are its content and its style, and both can be used as a means of categorization. In this paper we present an approach to text categorization in terms of genre and author for Modern Greek. In contrast to previous stylometric approaches, we attempt to take full advantage of existing natural language processing (NLP) tools. To this end, we propose a set of style markers including analysis-level measures that represent the way in which the input text has been analyzed and capture useful stylistic information without additional cost. We present a set of small-scale but reasonable experiments in text genre detection, author identification, and author verification tasks and show that the proposed method performs better than the most popular distributional lexical measures, i.e., functions of vocabulary richness and frequencies of occurrence of the most frequent words. All the presented experiments are based on unrestricted text downloaded from the World Wide Web without any manual text preprocessing or text sampling. Various performance issues regarding the training set size and the significance of the proposed style markers are discussed. Our system can be used in any application that requires fast and easily adaptable text categorization in terms of stylistically homogeneous categories. Moreover, the procedure of defining analysis-level markers can be followed in order to extract useful stylistic information using existing text processing tools.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><doi>10.1162/089120100750105920</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0891-2017
ispartof Computational linguistics - Association for Computational Linguistics, 2000-12, Vol.26 (4), p.471-495
issn 0891-2017
1530-9312
language eng
recordid cdi_proquest_miscellaneous_29525993
source Alma/SFX Local Collection
subjects Applied linguistics
Computational linguistics
Linguistics
title Automatic Text Categorization in Terms of Genre and Author
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A07%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Text%20Categorization%20in%20Terms%20of%20Genre%20and%20Author&rft.jtitle=Computational%20linguistics%20-%20Association%20for%20Computational%20Linguistics&rft.au=Stamatatos,%20Efstathios&rft.date=2000-12-01&rft.volume=26&rft.issue=4&rft.spage=471&rft.epage=495&rft.pages=471-495&rft.issn=0891-2017&rft.eissn=1530-9312&rft.coden=AJCLD9&rft_id=info:doi/10.1162/089120100750105920&rft_dat=%3Cproquest_pasca%3E29525993%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29525993&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_806a9acf86f84f35aa46d3191ed3e645&rfr_iscdi=true