Manipulating Ge quantum dots on ultrathin SixGe1-x oxide films using scanning tunneling microscope tips
Germanium quantum dots (QDs) were extracted from ultrathin SixGe1-x oxide films using scanning tunneling microscope (STM) tips. The extraction was most efficiently performed at a positive sample bias voltage of +5.0V. The tunneling current dependence of the extraction efficiency was explained by the...
Gespeichert in:
Veröffentlicht in: | Surface science 2006-09, Vol.600 (17), p.3456-3460 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3460 |
---|---|
container_issue | 17 |
container_start_page | 3456 |
container_title | Surface science |
container_volume | 600 |
creator | NAKAMURA, Yoshiaki TAKATA, Hiroyuki MASADA, Akiko ICHIKAWA, Masakazu |
description | Germanium quantum dots (QDs) were extracted from ultrathin SixGe1-x oxide films using scanning tunneling microscope (STM) tips. The extraction was most efficiently performed at a positive sample bias voltage of +5.0V. The tunneling current dependence of the extraction efficiency was explained by the electric field evaporation transfer mechanism for positive Ge ions from QDs to STM tips. Ge QDs (7nm) were formed and isolated spatially by extracting the surrounding Ge QDs with an ultrahigh density of > 1012cm-2. Scanning tunneling spectroscopy of the spatially-isolated QDs revealed that QDs with an ultrahigh density are electrically-isolated from the adjacent dots. |
doi_str_mv | 10.1016/j.susc.2006.06.035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29525796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29525796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-780d0079921c313f8b9027b05eada020b493dc20a9ed91474abb28c7745bfb343</originalsourceid><addsrcrecordid>eNpFUE1LxDAUDKLg-vEHPOWit64vSds0R1l0FVY8qOeQpumapU27TQLrv7dhF3wMvDnMDO8NQncElgRI-bhb-uj1kgKUywRWnKEFqbjIKC-qc7QAYCIrgVaX6Mr7HcyTi2KBtu_K2TF2Kli3xWuD91G5EHvcDMHjweHYhUmFH-vwpz2sDckOeDjYxuDWdr3H0Sef18q5REJ0znSJ9VZPg9fDaHCwo79BF63qvLk97Wv0_fL8tXrNNh_rt9XTJtOM5yHjFTQAXAhKNCOsrWoBlNdQGNUooFDngjWaghKmESTnuaprWmnO86Jua5aza_RwzB2nYR-ND7K3XpuuU84M0UsqClpwUc5CehSmM_1kWjlOtlfTryQgU6dyJ1OnMnUqE1gxm-5P6Wp-uWsn5bT1_86KAC8pZ39n43nk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29525796</pqid></control><display><type>article</type><title>Manipulating Ge quantum dots on ultrathin SixGe1-x oxide films using scanning tunneling microscope tips</title><source>Elsevier ScienceDirect Journals</source><creator>NAKAMURA, Yoshiaki ; TAKATA, Hiroyuki ; MASADA, Akiko ; ICHIKAWA, Masakazu</creator><creatorcontrib>NAKAMURA, Yoshiaki ; TAKATA, Hiroyuki ; MASADA, Akiko ; ICHIKAWA, Masakazu</creatorcontrib><description>Germanium quantum dots (QDs) were extracted from ultrathin SixGe1-x oxide films using scanning tunneling microscope (STM) tips. The extraction was most efficiently performed at a positive sample bias voltage of +5.0V. The tunneling current dependence of the extraction efficiency was explained by the electric field evaporation transfer mechanism for positive Ge ions from QDs to STM tips. Ge QDs (7nm) were formed and isolated spatially by extracting the surrounding Ge QDs with an ultrahigh density of > 1012cm-2. Scanning tunneling spectroscopy of the spatially-isolated QDs revealed that QDs with an ultrahigh density are electrically-isolated from the adjacent dots.</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/j.susc.2006.06.035</identifier><identifier>CODEN: SUSCAS</identifier><language>eng</language><publisher>Lausanne: Elsevier Science</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Physics</subject><ispartof>Surface science, 2006-09, Vol.600 (17), p.3456-3460</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-780d0079921c313f8b9027b05eada020b493dc20a9ed91474abb28c7745bfb343</citedby><cites>FETCH-LOGICAL-c374t-780d0079921c313f8b9027b05eada020b493dc20a9ed91474abb28c7745bfb343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18107627$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>NAKAMURA, Yoshiaki</creatorcontrib><creatorcontrib>TAKATA, Hiroyuki</creatorcontrib><creatorcontrib>MASADA, Akiko</creatorcontrib><creatorcontrib>ICHIKAWA, Masakazu</creatorcontrib><title>Manipulating Ge quantum dots on ultrathin SixGe1-x oxide films using scanning tunneling microscope tips</title><title>Surface science</title><description>Germanium quantum dots (QDs) were extracted from ultrathin SixGe1-x oxide films using scanning tunneling microscope (STM) tips. The extraction was most efficiently performed at a positive sample bias voltage of +5.0V. The tunneling current dependence of the extraction efficiency was explained by the electric field evaporation transfer mechanism for positive Ge ions from QDs to STM tips. Ge QDs (7nm) were formed and isolated spatially by extracting the surrounding Ge QDs with an ultrahigh density of > 1012cm-2. Scanning tunneling spectroscopy of the spatially-isolated QDs revealed that QDs with an ultrahigh density are electrically-isolated from the adjacent dots.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFUE1LxDAUDKLg-vEHPOWit64vSds0R1l0FVY8qOeQpumapU27TQLrv7dhF3wMvDnMDO8NQncElgRI-bhb-uj1kgKUywRWnKEFqbjIKC-qc7QAYCIrgVaX6Mr7HcyTi2KBtu_K2TF2Kli3xWuD91G5EHvcDMHjweHYhUmFH-vwpz2sDckOeDjYxuDWdr3H0Sef18q5REJ0znSJ9VZPg9fDaHCwo79BF63qvLk97Wv0_fL8tXrNNh_rt9XTJtOM5yHjFTQAXAhKNCOsrWoBlNdQGNUooFDngjWaghKmESTnuaprWmnO86Jua5aza_RwzB2nYR-ND7K3XpuuU84M0UsqClpwUc5CehSmM_1kWjlOtlfTryQgU6dyJ1OnMnUqE1gxm-5P6Wp-uWsn5bT1_86KAC8pZ39n43nk</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>NAKAMURA, Yoshiaki</creator><creator>TAKATA, Hiroyuki</creator><creator>MASADA, Akiko</creator><creator>ICHIKAWA, Masakazu</creator><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20060901</creationdate><title>Manipulating Ge quantum dots on ultrathin SixGe1-x oxide films using scanning tunneling microscope tips</title><author>NAKAMURA, Yoshiaki ; TAKATA, Hiroyuki ; MASADA, Akiko ; ICHIKAWA, Masakazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-780d0079921c313f8b9027b05eada020b493dc20a9ed91474abb28c7745bfb343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NAKAMURA, Yoshiaki</creatorcontrib><creatorcontrib>TAKATA, Hiroyuki</creatorcontrib><creatorcontrib>MASADA, Akiko</creatorcontrib><creatorcontrib>ICHIKAWA, Masakazu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NAKAMURA, Yoshiaki</au><au>TAKATA, Hiroyuki</au><au>MASADA, Akiko</au><au>ICHIKAWA, Masakazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulating Ge quantum dots on ultrathin SixGe1-x oxide films using scanning tunneling microscope tips</atitle><jtitle>Surface science</jtitle><date>2006-09-01</date><risdate>2006</risdate><volume>600</volume><issue>17</issue><spage>3456</spage><epage>3460</epage><pages>3456-3460</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><coden>SUSCAS</coden><abstract>Germanium quantum dots (QDs) were extracted from ultrathin SixGe1-x oxide films using scanning tunneling microscope (STM) tips. The extraction was most efficiently performed at a positive sample bias voltage of +5.0V. The tunneling current dependence of the extraction efficiency was explained by the electric field evaporation transfer mechanism for positive Ge ions from QDs to STM tips. Ge QDs (7nm) were formed and isolated spatially by extracting the surrounding Ge QDs with an ultrahigh density of > 1012cm-2. Scanning tunneling spectroscopy of the spatially-isolated QDs revealed that QDs with an ultrahigh density are electrically-isolated from the adjacent dots.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier Science</pub><doi>10.1016/j.susc.2006.06.035</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-6028 |
ispartof | Surface science, 2006-09, Vol.600 (17), p.3456-3460 |
issn | 0039-6028 1879-2758 |
language | eng |
recordid | cdi_proquest_miscellaneous_29525796 |
source | Elsevier ScienceDirect Journals |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Exact sciences and technology Physics |
title | Manipulating Ge quantum dots on ultrathin SixGe1-x oxide films using scanning tunneling microscope tips |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulating%20Ge%20quantum%20dots%20on%20ultrathin%20SixGe1-x%20oxide%20films%20using%20scanning%20tunneling%20microscope%20tips&rft.jtitle=Surface%20science&rft.au=NAKAMURA,%20Yoshiaki&rft.date=2006-09-01&rft.volume=600&rft.issue=17&rft.spage=3456&rft.epage=3460&rft.pages=3456-3460&rft.issn=0039-6028&rft.eissn=1879-2758&rft.coden=SUSCAS&rft_id=info:doi/10.1016/j.susc.2006.06.035&rft_dat=%3Cproquest_cross%3E29525796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29525796&rft_id=info:pmid/&rfr_iscdi=true |