Low temperature catalytic partial oxidation of methane for gas-to-liquids applications

The catalytic partial oxidation (CPO) of methane in the presence of steam (low temperature catalytic partial oxidation, LTCPO) over noble metal catalysts was investigated. The “dry” CPO over ruthenium and rhodium catalysts was studied by thermogravimetric analyses coupled with IR spectroscopy. For C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. A, General General, 2005-09, Vol.292, p.177-188
Hauptverfasser: Rabe, Stefan, Truong, Thanh-Binh, Vogel, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue
container_start_page 177
container_title Applied catalysis. A, General
container_volume 292
creator Rabe, Stefan
Truong, Thanh-Binh
Vogel, Frédéric
description The catalytic partial oxidation (CPO) of methane in the presence of steam (low temperature catalytic partial oxidation, LTCPO) over noble metal catalysts was investigated. The “dry” CPO over ruthenium and rhodium catalysts was studied by thermogravimetric analyses coupled with IR spectroscopy. For CPO conditions, high CO selectivities at comparably low temperatures were observed for a rhodium/γ-alumina catalyst (5% rhodium) and a 1% ruthenium/TiO 2 catalyst giving evidence that a direct reaction mechanism is involved at low temperatures. It was found that under CPO conditions at low temperatures (
doi_str_mv 10.1016/j.apcata.2005.06.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29525645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926860X05004096</els_id><sourcerecordid>29525645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-34405e5a95721265ba70b3c9023412f3d4fe1e4ae5d82ce82ee68bb32904a50c3</originalsourceid><addsrcrecordid>eNp9kE1P20AQhlcVSA3Qf9DDXtqbzeyn7UulCkFbKVIvgLitJutxu5GTNbsbIP8ep0Hi1tNcnvedmYexzwJqAcJermucPBasJYCpwdYA4gNbiLZRlWobc8IW0ElbtRYePrKznNcAIHVnFux-GZ95oc1ECcsuET_0jPsSPJ8wlYAjjy-hxxLilseBb6j8xS3xISb-B3NVYjWGx13oM8dpGoP_R-YLdjrgmOnT2zxndzfXt1c_q-XvH7-uvi8rr2xTKqU1GDLYmUYKac0KG1gp34FUWshB9XogQRrJ9K301Eoi265WSnag0YBX5-zrsXdK8XFHubhNyJ7Gcb4x7rKTnZHGajOD-gj6FHNONLgphQ2mvRPgDhLd2h0luoNEB9bNEufYl7d-zB7HIeHWh_yebcA2QjUz9-3I0fzsU6Dksg-09dSHRL64Pob_L3oFbG6KbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29525645</pqid></control><display><type>article</type><title>Low temperature catalytic partial oxidation of methane for gas-to-liquids applications</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Rabe, Stefan ; Truong, Thanh-Binh ; Vogel, Frédéric</creator><creatorcontrib>Rabe, Stefan ; Truong, Thanh-Binh ; Vogel, Frédéric</creatorcontrib><description>The catalytic partial oxidation (CPO) of methane in the presence of steam (low temperature catalytic partial oxidation, LTCPO) over noble metal catalysts was investigated. The “dry” CPO over ruthenium and rhodium catalysts was studied by thermogravimetric analyses coupled with IR spectroscopy. For CPO conditions, high CO selectivities at comparably low temperatures were observed for a rhodium/γ-alumina catalyst (5% rhodium) and a 1% ruthenium/TiO 2 catalyst giving evidence that a direct reaction mechanism is involved at low temperatures. It was found that under CPO conditions at low temperatures (&lt;450 °C) the catalysts are in an oxidised state, which is probably responsible for the formation of carbon dioxide. At higher temperatures, the catalysts are in a reduced state. The CO selectivity increases with the reduction of the catalyst. Our results indicate that a direct CO formation mechanism is also possible for ruthenium/alumina catalysts. The platinum catalysts studied in the LTCPO of methane were less active than rhodium and ruthenium catalysts and revealed a lower hydrogen yield. It was found that the steam reforming activity of the ruthenium/alumina catalyst was reduced inhibited by ceria. The long term stability (80 h) of a ruthenium catalyst for LTCPO of methane was demonstrated.</description><identifier>ISSN: 0926-860X</identifier><identifier>EISSN: 1873-3875</identifier><identifier>DOI: 10.1016/j.apcata.2005.06.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Catalysis ; Catalytic partial oxidation ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; GTL ; Low temperature ; Methane ; Rhodium ; Ruthenium ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Applied catalysis. A, General, 2005-09, Vol.292, p.177-188</ispartof><rights>2005 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-34405e5a95721265ba70b3c9023412f3d4fe1e4ae5d82ce82ee68bb32904a50c3</citedby><cites>FETCH-LOGICAL-c367t-34405e5a95721265ba70b3c9023412f3d4fe1e4ae5d82ce82ee68bb32904a50c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apcata.2005.06.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17067137$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rabe, Stefan</creatorcontrib><creatorcontrib>Truong, Thanh-Binh</creatorcontrib><creatorcontrib>Vogel, Frédéric</creatorcontrib><title>Low temperature catalytic partial oxidation of methane for gas-to-liquids applications</title><title>Applied catalysis. A, General</title><description>The catalytic partial oxidation (CPO) of methane in the presence of steam (low temperature catalytic partial oxidation, LTCPO) over noble metal catalysts was investigated. The “dry” CPO over ruthenium and rhodium catalysts was studied by thermogravimetric analyses coupled with IR spectroscopy. For CPO conditions, high CO selectivities at comparably low temperatures were observed for a rhodium/γ-alumina catalyst (5% rhodium) and a 1% ruthenium/TiO 2 catalyst giving evidence that a direct reaction mechanism is involved at low temperatures. It was found that under CPO conditions at low temperatures (&lt;450 °C) the catalysts are in an oxidised state, which is probably responsible for the formation of carbon dioxide. At higher temperatures, the catalysts are in a reduced state. The CO selectivity increases with the reduction of the catalyst. Our results indicate that a direct CO formation mechanism is also possible for ruthenium/alumina catalysts. The platinum catalysts studied in the LTCPO of methane were less active than rhodium and ruthenium catalysts and revealed a lower hydrogen yield. It was found that the steam reforming activity of the ruthenium/alumina catalyst was reduced inhibited by ceria. The long term stability (80 h) of a ruthenium catalyst for LTCPO of methane was demonstrated.</description><subject>Catalysis</subject><subject>Catalytic partial oxidation</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>GTL</subject><subject>Low temperature</subject><subject>Methane</subject><subject>Rhodium</subject><subject>Ruthenium</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0926-860X</issn><issn>1873-3875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE1P20AQhlcVSA3Qf9DDXtqbzeyn7UulCkFbKVIvgLitJutxu5GTNbsbIP8ep0Hi1tNcnvedmYexzwJqAcJermucPBasJYCpwdYA4gNbiLZRlWobc8IW0ElbtRYePrKznNcAIHVnFux-GZ95oc1ECcsuET_0jPsSPJ8wlYAjjy-hxxLilseBb6j8xS3xISb-B3NVYjWGx13oM8dpGoP_R-YLdjrgmOnT2zxndzfXt1c_q-XvH7-uvi8rr2xTKqU1GDLYmUYKac0KG1gp34FUWshB9XogQRrJ9K301Eoi265WSnag0YBX5-zrsXdK8XFHubhNyJ7Gcb4x7rKTnZHGajOD-gj6FHNONLgphQ2mvRPgDhLd2h0luoNEB9bNEufYl7d-zB7HIeHWh_yebcA2QjUz9-3I0fzsU6Dksg-09dSHRL64Pob_L3oFbG6KbQ</recordid><startdate>20050918</startdate><enddate>20050918</enddate><creator>Rabe, Stefan</creator><creator>Truong, Thanh-Binh</creator><creator>Vogel, Frédéric</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20050918</creationdate><title>Low temperature catalytic partial oxidation of methane for gas-to-liquids applications</title><author>Rabe, Stefan ; Truong, Thanh-Binh ; Vogel, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-34405e5a95721265ba70b3c9023412f3d4fe1e4ae5d82ce82ee68bb32904a50c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Catalysis</topic><topic>Catalytic partial oxidation</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>GTL</topic><topic>Low temperature</topic><topic>Methane</topic><topic>Rhodium</topic><topic>Ruthenium</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rabe, Stefan</creatorcontrib><creatorcontrib>Truong, Thanh-Binh</creatorcontrib><creatorcontrib>Vogel, Frédéric</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied catalysis. A, General</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rabe, Stefan</au><au>Truong, Thanh-Binh</au><au>Vogel, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low temperature catalytic partial oxidation of methane for gas-to-liquids applications</atitle><jtitle>Applied catalysis. A, General</jtitle><date>2005-09-18</date><risdate>2005</risdate><volume>292</volume><spage>177</spage><epage>188</epage><pages>177-188</pages><issn>0926-860X</issn><eissn>1873-3875</eissn><abstract>The catalytic partial oxidation (CPO) of methane in the presence of steam (low temperature catalytic partial oxidation, LTCPO) over noble metal catalysts was investigated. The “dry” CPO over ruthenium and rhodium catalysts was studied by thermogravimetric analyses coupled with IR spectroscopy. For CPO conditions, high CO selectivities at comparably low temperatures were observed for a rhodium/γ-alumina catalyst (5% rhodium) and a 1% ruthenium/TiO 2 catalyst giving evidence that a direct reaction mechanism is involved at low temperatures. It was found that under CPO conditions at low temperatures (&lt;450 °C) the catalysts are in an oxidised state, which is probably responsible for the formation of carbon dioxide. At higher temperatures, the catalysts are in a reduced state. The CO selectivity increases with the reduction of the catalyst. Our results indicate that a direct CO formation mechanism is also possible for ruthenium/alumina catalysts. The platinum catalysts studied in the LTCPO of methane were less active than rhodium and ruthenium catalysts and revealed a lower hydrogen yield. It was found that the steam reforming activity of the ruthenium/alumina catalyst was reduced inhibited by ceria. The long term stability (80 h) of a ruthenium catalyst for LTCPO of methane was demonstrated.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcata.2005.06.001</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-860X
ispartof Applied catalysis. A, General, 2005-09, Vol.292, p.177-188
issn 0926-860X
1873-3875
language eng
recordid cdi_proquest_miscellaneous_29525645
source ScienceDirect Journals (5 years ago - present)
subjects Catalysis
Catalytic partial oxidation
Chemistry
Exact sciences and technology
General and physical chemistry
GTL
Low temperature
Methane
Rhodium
Ruthenium
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Low temperature catalytic partial oxidation of methane for gas-to-liquids applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20temperature%20catalytic%20partial%20oxidation%20of%20methane%20for%20gas-to-liquids%20applications&rft.jtitle=Applied%20catalysis.%20A,%20General&rft.au=Rabe,%20Stefan&rft.date=2005-09-18&rft.volume=292&rft.spage=177&rft.epage=188&rft.pages=177-188&rft.issn=0926-860X&rft.eissn=1873-3875&rft_id=info:doi/10.1016/j.apcata.2005.06.001&rft_dat=%3Cproquest_cross%3E29525645%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29525645&rft_id=info:pmid/&rft_els_id=S0926860X05004096&rfr_iscdi=true