Proton conducting polymer electrolytes based on phosphorylated phenol–formaldehyde resins

Phosphorylated phenol–formaldehyde (PPF) resins were synthesized and investigated as the acidic components of proton conducting polymer electrolytes. The synthesis of PPF resins was carried out by melt polycondensation of monophenyl phosphate and formaldehyde (in the form of trioxane). The structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2006-09, Vol.159 (1), p.378-384
Hauptverfasser: KEDZIERSKI, Michał, FLORJANCZYK, Zbigniew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 384
container_issue 1
container_start_page 378
container_title Journal of power sources
container_volume 159
creator KEDZIERSKI, Michał
FLORJANCZYK, Zbigniew
description Phosphorylated phenol–formaldehyde (PPF) resins were synthesized and investigated as the acidic components of proton conducting polymer electrolytes. The synthesis of PPF resins was carried out by melt polycondensation of monophenyl phosphate and formaldehyde (in the form of trioxane). The structure and molecular weight characterization of PPF resins were performed employing 1H-, 13C- and 31P-NMR spectroscopy, Fast Atom Bombardment mass spectrometry and elemental analysis. PPF resins may be cured with an excess of formaldehyde. Depending on the curing conditions, products of different crosslinking density (expressed by equilibrium swelling ratio) and total ion-exchange capacity up to 9 mequiv. g −1 may be obtained. The soluble and crosslinked PPF resins were examined from the viewpoint of conducting properties and hydrolytical stability. Crosslinked PPF resins embedded in poly(vinylidene fluoride) binder form ion-exchange membranes of ambient conductivities above 0.05 S cm −1. These composite membranes have been investigated in a methanol fuel cell and showed stable performance during several hours of cell operation.
doi_str_mv 10.1016/j.jpowsour.2006.02.042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29525240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775306003594</els_id><sourcerecordid>29525240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-d3ba845f55ba0b0efde321c82b8a12ea45f133864a4d74857566f0953aace6b83</originalsourceid><addsrcrecordid>eNqFkM2OFCEQgInRxHHXVzB90Vu3BTQNc9Ns_Es20cPuaQ-EhmqHCdO0VI9mbr6Db-iTyGbWePRQIVV8VQUfYy84dBz48Hrf7Zf8g_KxdAJg6EB00ItHbMONlq3QSj1mG5DatFor-ZQ9I9oDAOcaNuzuS8lrnhuf53D0a5y_NktOpwOWBhP6tdRkRWpGRxiaCi67TDXKKbm1VpYdzjn9_vlryuXgUsDdKWBTkOJMl-zJ5BLh84fzgt2-f3dz9bG9_vzh09Xb69ZLLdc2yNGZXk1KjQ5GwCmgFNwbMRrHBbp6xaU0Q-_6oHujtBqGCbZKOudxGI28YK_Oc5eSvx2RVnuI5DElN2M-khVbJZTooYLDGfQlExWc7FLiwZWT5WDvXdq9_evS3ru0IGx1WRtfPmxw5F2aipt9pH_dRm77-q7KvTlzWL_7PWKx5CPOHkMsVaYNOf5v1R8FB5ID</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29525240</pqid></control><display><type>article</type><title>Proton conducting polymer electrolytes based on phosphorylated phenol–formaldehyde resins</title><source>Elsevier ScienceDirect Journals</source><creator>KEDZIERSKI, Michał ; FLORJANCZYK, Zbigniew</creator><creatorcontrib>KEDZIERSKI, Michał ; FLORJANCZYK, Zbigniew</creatorcontrib><description>Phosphorylated phenol–formaldehyde (PPF) resins were synthesized and investigated as the acidic components of proton conducting polymer electrolytes. The synthesis of PPF resins was carried out by melt polycondensation of monophenyl phosphate and formaldehyde (in the form of trioxane). The structure and molecular weight characterization of PPF resins were performed employing 1H-, 13C- and 31P-NMR spectroscopy, Fast Atom Bombardment mass spectrometry and elemental analysis. PPF resins may be cured with an excess of formaldehyde. Depending on the curing conditions, products of different crosslinking density (expressed by equilibrium swelling ratio) and total ion-exchange capacity up to 9 mequiv. g −1 may be obtained. The soluble and crosslinked PPF resins were examined from the viewpoint of conducting properties and hydrolytical stability. Crosslinked PPF resins embedded in poly(vinylidene fluoride) binder form ion-exchange membranes of ambient conductivities above 0.05 S cm −1. These composite membranes have been investigated in a methanol fuel cell and showed stable performance during several hours of cell operation.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2006.02.042</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>AC impedance ; Applied sciences ; DMFC ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Membranes ; Phosphorylated phenol–formaldehyde resin ; Proton conductivity</subject><ispartof>Journal of power sources, 2006-09, Vol.159 (1), p.378-384</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-d3ba845f55ba0b0efde321c82b8a12ea45f133864a4d74857566f0953aace6b83</citedby><cites>FETCH-LOGICAL-c373t-d3ba845f55ba0b0efde321c82b8a12ea45f133864a4d74857566f0953aace6b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2006.02.042$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18394575$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KEDZIERSKI, Michał</creatorcontrib><creatorcontrib>FLORJANCZYK, Zbigniew</creatorcontrib><title>Proton conducting polymer electrolytes based on phosphorylated phenol–formaldehyde resins</title><title>Journal of power sources</title><description>Phosphorylated phenol–formaldehyde (PPF) resins were synthesized and investigated as the acidic components of proton conducting polymer electrolytes. The synthesis of PPF resins was carried out by melt polycondensation of monophenyl phosphate and formaldehyde (in the form of trioxane). The structure and molecular weight characterization of PPF resins were performed employing 1H-, 13C- and 31P-NMR spectroscopy, Fast Atom Bombardment mass spectrometry and elemental analysis. PPF resins may be cured with an excess of formaldehyde. Depending on the curing conditions, products of different crosslinking density (expressed by equilibrium swelling ratio) and total ion-exchange capacity up to 9 mequiv. g −1 may be obtained. The soluble and crosslinked PPF resins were examined from the viewpoint of conducting properties and hydrolytical stability. Crosslinked PPF resins embedded in poly(vinylidene fluoride) binder form ion-exchange membranes of ambient conductivities above 0.05 S cm −1. These composite membranes have been investigated in a methanol fuel cell and showed stable performance during several hours of cell operation.</description><subject>AC impedance</subject><subject>Applied sciences</subject><subject>DMFC</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Membranes</subject><subject>Phosphorylated phenol–formaldehyde resin</subject><subject>Proton conductivity</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkM2OFCEQgInRxHHXVzB90Vu3BTQNc9Ns_Es20cPuaQ-EhmqHCdO0VI9mbr6Db-iTyGbWePRQIVV8VQUfYy84dBz48Hrf7Zf8g_KxdAJg6EB00ItHbMONlq3QSj1mG5DatFor-ZQ9I9oDAOcaNuzuS8lrnhuf53D0a5y_NktOpwOWBhP6tdRkRWpGRxiaCi67TDXKKbm1VpYdzjn9_vlryuXgUsDdKWBTkOJMl-zJ5BLh84fzgt2-f3dz9bG9_vzh09Xb69ZLLdc2yNGZXk1KjQ5GwCmgFNwbMRrHBbp6xaU0Q-_6oHujtBqGCbZKOudxGI28YK_Oc5eSvx2RVnuI5DElN2M-khVbJZTooYLDGfQlExWc7FLiwZWT5WDvXdq9_evS3ru0IGx1WRtfPmxw5F2aipt9pH_dRm77-q7KvTlzWL_7PWKx5CPOHkMsVaYNOf5v1R8FB5ID</recordid><startdate>20060913</startdate><enddate>20060913</enddate><creator>KEDZIERSKI, Michał</creator><creator>FLORJANCZYK, Zbigniew</creator><general>Elsevier B.V</general><general>Elsevier Sequoia</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20060913</creationdate><title>Proton conducting polymer electrolytes based on phosphorylated phenol–formaldehyde resins</title><author>KEDZIERSKI, Michał ; FLORJANCZYK, Zbigniew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-d3ba845f55ba0b0efde321c82b8a12ea45f133864a4d74857566f0953aace6b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>AC impedance</topic><topic>Applied sciences</topic><topic>DMFC</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Membranes</topic><topic>Phosphorylated phenol–formaldehyde resin</topic><topic>Proton conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KEDZIERSKI, Michał</creatorcontrib><creatorcontrib>FLORJANCZYK, Zbigniew</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KEDZIERSKI, Michał</au><au>FLORJANCZYK, Zbigniew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton conducting polymer electrolytes based on phosphorylated phenol–formaldehyde resins</atitle><jtitle>Journal of power sources</jtitle><date>2006-09-13</date><risdate>2006</risdate><volume>159</volume><issue>1</issue><spage>378</spage><epage>384</epage><pages>378-384</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Phosphorylated phenol–formaldehyde (PPF) resins were synthesized and investigated as the acidic components of proton conducting polymer electrolytes. The synthesis of PPF resins was carried out by melt polycondensation of monophenyl phosphate and formaldehyde (in the form of trioxane). The structure and molecular weight characterization of PPF resins were performed employing 1H-, 13C- and 31P-NMR spectroscopy, Fast Atom Bombardment mass spectrometry and elemental analysis. PPF resins may be cured with an excess of formaldehyde. Depending on the curing conditions, products of different crosslinking density (expressed by equilibrium swelling ratio) and total ion-exchange capacity up to 9 mequiv. g −1 may be obtained. The soluble and crosslinked PPF resins were examined from the viewpoint of conducting properties and hydrolytical stability. Crosslinked PPF resins embedded in poly(vinylidene fluoride) binder form ion-exchange membranes of ambient conductivities above 0.05 S cm −1. These composite membranes have been investigated in a methanol fuel cell and showed stable performance during several hours of cell operation.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2006.02.042</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2006-09, Vol.159 (1), p.378-384
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_29525240
source Elsevier ScienceDirect Journals
subjects AC impedance
Applied sciences
DMFC
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Membranes
Phosphorylated phenol–formaldehyde resin
Proton conductivity
title Proton conducting polymer electrolytes based on phosphorylated phenol–formaldehyde resins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton%20conducting%20polymer%20electrolytes%20based%20on%20phosphorylated%20phenol%E2%80%93formaldehyde%20resins&rft.jtitle=Journal%20of%20power%20sources&rft.au=KEDZIERSKI,%20Micha%C5%82&rft.date=2006-09-13&rft.volume=159&rft.issue=1&rft.spage=378&rft.epage=384&rft.pages=378-384&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2006.02.042&rft_dat=%3Cproquest_cross%3E29525240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29525240&rft_id=info:pmid/&rft_els_id=S0378775306003594&rfr_iscdi=true