Krylov Method Revisited with an Application to the Localization of Eigenvalues
Our aim is to localize matrix eigenvalues in the sense that we build a sufficiently small neighborhood for each of them (or for a cluster), through not prohibitively expensive computations. Our results enter the framework started with Gerschgorin disks and deals at the present time with pseudospectr...
Gespeichert in:
Veröffentlicht in: | Numerical functional analysis and optimization 2006-09, Vol.27 (5-6), p.583-618 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 618 |
---|---|
container_issue | 5-6 |
container_start_page | 583 |
container_title | Numerical functional analysis and optimization |
container_volume | 27 |
creator | Grammont, Laurence Largillier, Alain |
description | Our aim is to localize matrix eigenvalues in the sense that we build a sufficiently small neighborhood for each of them (or for a cluster), through not prohibitively expensive computations. Our results enter the framework started with Gerschgorin disks and deals at the present time with pseudospectra. The set of theoretical tools we have chosen to use does not avoid the notion of the characteristic polynomial. Certainly, when some computations are performed on it, the well-known ill-conditioning of its coefficients with respect to the matrix entries is properly and carefully handled. |
doi_str_mv | 10.1080/01630560600657166 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29517701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29517701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-a37adfedafc6d5d635ff4d0f7a35ab8d9c66a381859384017ee2134231ee688c3</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWKs_wF1W7kaTyUySATel1A-sCqLrEPNhI-lkTGJr_fVOGXdFXD1475x34QJwitE5RhxdIEwJqimiCNGaYUr3wAjXpCzKirJ9MNreix4gh-AopXeEECkbPgIPd3Hjwwrem7wIGj6ZlUsuGw3XLi-gbOGk67xTMrvQwhxgXhg4D0p69z3sgoUz92balfSfJh2DAyt9Mie_cwxermbP05ti_nh9O53MC0UYy4UkTGprtLSK6lpTUltbaWSZJLV85bpRlErCMa8bwiuEmTElJlVJsDGUc0XG4Gz428Xw0edmsXRJGe9la8JnEmVTY8YQ7kE8gCqGlKKxootuKeNGYCS2zYmd5nqHDY5rbYhLuQ7Ra5FlX1S0UbbKpV1L5K_cm5f_muTv4B--3IZm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29517701</pqid></control><display><type>article</type><title>Krylov Method Revisited with an Application to the Localization of Eigenvalues</title><source>Taylor & Francis</source><creator>Grammont, Laurence ; Largillier, Alain</creator><creatorcontrib>Grammont, Laurence ; Largillier, Alain</creatorcontrib><description>Our aim is to localize matrix eigenvalues in the sense that we build a sufficiently small neighborhood for each of them (or for a cluster), through not prohibitively expensive computations. Our results enter the framework started with Gerschgorin disks and deals at the present time with pseudospectra. The set of theoretical tools we have chosen to use does not avoid the notion of the characteristic polynomial. Certainly, when some computations are performed on it, the well-known ill-conditioning of its coefficients with respect to the matrix entries is properly and carefully handled.</description><identifier>ISSN: 0163-0563</identifier><identifier>EISSN: 1532-2467</identifier><identifier>DOI: 10.1080/01630560600657166</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>Characteristic polynomial ; Krylov matrix ; ε-Spectrum</subject><ispartof>Numerical functional analysis and optimization, 2006-09, Vol.27 (5-6), p.583-618</ispartof><rights>Copyright Taylor & Francis Group, LLC 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-a37adfedafc6d5d635ff4d0f7a35ab8d9c66a381859384017ee2134231ee688c3</citedby><cites>FETCH-LOGICAL-c377t-a37adfedafc6d5d635ff4d0f7a35ab8d9c66a381859384017ee2134231ee688c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01630560600657166$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01630560600657166$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Grammont, Laurence</creatorcontrib><creatorcontrib>Largillier, Alain</creatorcontrib><title>Krylov Method Revisited with an Application to the Localization of Eigenvalues</title><title>Numerical functional analysis and optimization</title><description>Our aim is to localize matrix eigenvalues in the sense that we build a sufficiently small neighborhood for each of them (or for a cluster), through not prohibitively expensive computations. Our results enter the framework started with Gerschgorin disks and deals at the present time with pseudospectra. The set of theoretical tools we have chosen to use does not avoid the notion of the characteristic polynomial. Certainly, when some computations are performed on it, the well-known ill-conditioning of its coefficients with respect to the matrix entries is properly and carefully handled.</description><subject>Characteristic polynomial</subject><subject>Krylov matrix</subject><subject>ε-Spectrum</subject><issn>0163-0563</issn><issn>1532-2467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEURYMoWKs_wF1W7kaTyUySATel1A-sCqLrEPNhI-lkTGJr_fVOGXdFXD1475x34QJwitE5RhxdIEwJqimiCNGaYUr3wAjXpCzKirJ9MNreix4gh-AopXeEECkbPgIPd3Hjwwrem7wIGj6ZlUsuGw3XLi-gbOGk67xTMrvQwhxgXhg4D0p69z3sgoUz92balfSfJh2DAyt9Mie_cwxermbP05ti_nh9O53MC0UYy4UkTGprtLSK6lpTUltbaWSZJLV85bpRlErCMa8bwiuEmTElJlVJsDGUc0XG4Gz428Xw0edmsXRJGe9la8JnEmVTY8YQ7kE8gCqGlKKxootuKeNGYCS2zYmd5nqHDY5rbYhLuQ7Ra5FlX1S0UbbKpV1L5K_cm5f_muTv4B--3IZm</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Grammont, Laurence</creator><creator>Largillier, Alain</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060901</creationdate><title>Krylov Method Revisited with an Application to the Localization of Eigenvalues</title><author>Grammont, Laurence ; Largillier, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-a37adfedafc6d5d635ff4d0f7a35ab8d9c66a381859384017ee2134231ee688c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Characteristic polynomial</topic><topic>Krylov matrix</topic><topic>ε-Spectrum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grammont, Laurence</creatorcontrib><creatorcontrib>Largillier, Alain</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical functional analysis and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grammont, Laurence</au><au>Largillier, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Krylov Method Revisited with an Application to the Localization of Eigenvalues</atitle><jtitle>Numerical functional analysis and optimization</jtitle><date>2006-09-01</date><risdate>2006</risdate><volume>27</volume><issue>5-6</issue><spage>583</spage><epage>618</epage><pages>583-618</pages><issn>0163-0563</issn><eissn>1532-2467</eissn><abstract>Our aim is to localize matrix eigenvalues in the sense that we build a sufficiently small neighborhood for each of them (or for a cluster), through not prohibitively expensive computations. Our results enter the framework started with Gerschgorin disks and deals at the present time with pseudospectra. The set of theoretical tools we have chosen to use does not avoid the notion of the characteristic polynomial. Certainly, when some computations are performed on it, the well-known ill-conditioning of its coefficients with respect to the matrix entries is properly and carefully handled.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/01630560600657166</doi><tpages>36</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-0563 |
ispartof | Numerical functional analysis and optimization, 2006-09, Vol.27 (5-6), p.583-618 |
issn | 0163-0563 1532-2467 |
language | eng |
recordid | cdi_proquest_miscellaneous_29517701 |
source | Taylor & Francis |
subjects | Characteristic polynomial Krylov matrix ε-Spectrum |
title | Krylov Method Revisited with an Application to the Localization of Eigenvalues |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Krylov%20Method%20Revisited%20with%20an%20Application%20to%20the%20Localization%20of%20Eigenvalues&rft.jtitle=Numerical%20functional%20analysis%20and%20optimization&rft.au=Grammont,%20Laurence&rft.date=2006-09-01&rft.volume=27&rft.issue=5-6&rft.spage=583&rft.epage=618&rft.pages=583-618&rft.issn=0163-0563&rft.eissn=1532-2467&rft_id=info:doi/10.1080/01630560600657166&rft_dat=%3Cproquest_cross%3E29517701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29517701&rft_id=info:pmid/&rfr_iscdi=true |