Krylov Method Revisited with an Application to the Localization of Eigenvalues

Our aim is to localize matrix eigenvalues in the sense that we build a sufficiently small neighborhood for each of them (or for a cluster), through not prohibitively expensive computations. Our results enter the framework started with Gerschgorin disks and deals at the present time with pseudospectr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical functional analysis and optimization 2006-09, Vol.27 (5-6), p.583-618
Hauptverfasser: Grammont, Laurence, Largillier, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 618
container_issue 5-6
container_start_page 583
container_title Numerical functional analysis and optimization
container_volume 27
creator Grammont, Laurence
Largillier, Alain
description Our aim is to localize matrix eigenvalues in the sense that we build a sufficiently small neighborhood for each of them (or for a cluster), through not prohibitively expensive computations. Our results enter the framework started with Gerschgorin disks and deals at the present time with pseudospectra. The set of theoretical tools we have chosen to use does not avoid the notion of the characteristic polynomial. Certainly, when some computations are performed on it, the well-known ill-conditioning of its coefficients with respect to the matrix entries is properly and carefully handled.
doi_str_mv 10.1080/01630560600657166
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29517701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29517701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-a37adfedafc6d5d635ff4d0f7a35ab8d9c66a381859384017ee2134231ee688c3</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWKs_wF1W7kaTyUySATel1A-sCqLrEPNhI-lkTGJr_fVOGXdFXD1475x34QJwitE5RhxdIEwJqimiCNGaYUr3wAjXpCzKirJ9MNreix4gh-AopXeEECkbPgIPd3Hjwwrem7wIGj6ZlUsuGw3XLi-gbOGk67xTMrvQwhxgXhg4D0p69z3sgoUz92balfSfJh2DAyt9Mie_cwxermbP05ti_nh9O53MC0UYy4UkTGprtLSK6lpTUltbaWSZJLV85bpRlErCMa8bwiuEmTElJlVJsDGUc0XG4Gz428Xw0edmsXRJGe9la8JnEmVTY8YQ7kE8gCqGlKKxootuKeNGYCS2zYmd5nqHDY5rbYhLuQ7Ra5FlX1S0UbbKpV1L5K_cm5f_muTv4B--3IZm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29517701</pqid></control><display><type>article</type><title>Krylov Method Revisited with an Application to the Localization of Eigenvalues</title><source>Taylor &amp; Francis</source><creator>Grammont, Laurence ; Largillier, Alain</creator><creatorcontrib>Grammont, Laurence ; Largillier, Alain</creatorcontrib><description>Our aim is to localize matrix eigenvalues in the sense that we build a sufficiently small neighborhood for each of them (or for a cluster), through not prohibitively expensive computations. Our results enter the framework started with Gerschgorin disks and deals at the present time with pseudospectra. The set of theoretical tools we have chosen to use does not avoid the notion of the characteristic polynomial. Certainly, when some computations are performed on it, the well-known ill-conditioning of its coefficients with respect to the matrix entries is properly and carefully handled.</description><identifier>ISSN: 0163-0563</identifier><identifier>EISSN: 1532-2467</identifier><identifier>DOI: 10.1080/01630560600657166</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>Characteristic polynomial ; Krylov matrix ; ε-Spectrum</subject><ispartof>Numerical functional analysis and optimization, 2006-09, Vol.27 (5-6), p.583-618</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-a37adfedafc6d5d635ff4d0f7a35ab8d9c66a381859384017ee2134231ee688c3</citedby><cites>FETCH-LOGICAL-c377t-a37adfedafc6d5d635ff4d0f7a35ab8d9c66a381859384017ee2134231ee688c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01630560600657166$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01630560600657166$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Grammont, Laurence</creatorcontrib><creatorcontrib>Largillier, Alain</creatorcontrib><title>Krylov Method Revisited with an Application to the Localization of Eigenvalues</title><title>Numerical functional analysis and optimization</title><description>Our aim is to localize matrix eigenvalues in the sense that we build a sufficiently small neighborhood for each of them (or for a cluster), through not prohibitively expensive computations. Our results enter the framework started with Gerschgorin disks and deals at the present time with pseudospectra. The set of theoretical tools we have chosen to use does not avoid the notion of the characteristic polynomial. Certainly, when some computations are performed on it, the well-known ill-conditioning of its coefficients with respect to the matrix entries is properly and carefully handled.</description><subject>Characteristic polynomial</subject><subject>Krylov matrix</subject><subject>ε-Spectrum</subject><issn>0163-0563</issn><issn>1532-2467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEURYMoWKs_wF1W7kaTyUySATel1A-sCqLrEPNhI-lkTGJr_fVOGXdFXD1475x34QJwitE5RhxdIEwJqimiCNGaYUr3wAjXpCzKirJ9MNreix4gh-AopXeEECkbPgIPd3Hjwwrem7wIGj6ZlUsuGw3XLi-gbOGk67xTMrvQwhxgXhg4D0p69z3sgoUz92balfSfJh2DAyt9Mie_cwxermbP05ti_nh9O53MC0UYy4UkTGprtLSK6lpTUltbaWSZJLV85bpRlErCMa8bwiuEmTElJlVJsDGUc0XG4Gz428Xw0edmsXRJGe9la8JnEmVTY8YQ7kE8gCqGlKKxootuKeNGYCS2zYmd5nqHDY5rbYhLuQ7Ra5FlX1S0UbbKpV1L5K_cm5f_muTv4B--3IZm</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Grammont, Laurence</creator><creator>Largillier, Alain</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060901</creationdate><title>Krylov Method Revisited with an Application to the Localization of Eigenvalues</title><author>Grammont, Laurence ; Largillier, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-a37adfedafc6d5d635ff4d0f7a35ab8d9c66a381859384017ee2134231ee688c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Characteristic polynomial</topic><topic>Krylov matrix</topic><topic>ε-Spectrum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grammont, Laurence</creatorcontrib><creatorcontrib>Largillier, Alain</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical functional analysis and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grammont, Laurence</au><au>Largillier, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Krylov Method Revisited with an Application to the Localization of Eigenvalues</atitle><jtitle>Numerical functional analysis and optimization</jtitle><date>2006-09-01</date><risdate>2006</risdate><volume>27</volume><issue>5-6</issue><spage>583</spage><epage>618</epage><pages>583-618</pages><issn>0163-0563</issn><eissn>1532-2467</eissn><abstract>Our aim is to localize matrix eigenvalues in the sense that we build a sufficiently small neighborhood for each of them (or for a cluster), through not prohibitively expensive computations. Our results enter the framework started with Gerschgorin disks and deals at the present time with pseudospectra. The set of theoretical tools we have chosen to use does not avoid the notion of the characteristic polynomial. Certainly, when some computations are performed on it, the well-known ill-conditioning of its coefficients with respect to the matrix entries is properly and carefully handled.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/01630560600657166</doi><tpages>36</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0163-0563
ispartof Numerical functional analysis and optimization, 2006-09, Vol.27 (5-6), p.583-618
issn 0163-0563
1532-2467
language eng
recordid cdi_proquest_miscellaneous_29517701
source Taylor & Francis
subjects Characteristic polynomial
Krylov matrix
ε-Spectrum
title Krylov Method Revisited with an Application to the Localization of Eigenvalues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Krylov%20Method%20Revisited%20with%20an%20Application%20to%20the%20Localization%20of%20Eigenvalues&rft.jtitle=Numerical%20functional%20analysis%20and%20optimization&rft.au=Grammont,%20Laurence&rft.date=2006-09-01&rft.volume=27&rft.issue=5-6&rft.spage=583&rft.epage=618&rft.pages=583-618&rft.issn=0163-0563&rft.eissn=1532-2467&rft_id=info:doi/10.1080/01630560600657166&rft_dat=%3Cproquest_cross%3E29517701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29517701&rft_id=info:pmid/&rfr_iscdi=true