Application of support vector machines to corporate credit rating prediction

Corporate credit rating analysis has drawn a lot of research interests in previous studies, and recent studies have shown that machine learning techniques achieved better performance than traditional statistical ones. This paper applies support vector machines (SVMs) to the corporate credit rating p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2007-07, Vol.33 (1), p.67-74
1. Verfasser: Lee, Young-Chan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74
container_issue 1
container_start_page 67
container_title Expert systems with applications
container_volume 33
creator Lee, Young-Chan
description Corporate credit rating analysis has drawn a lot of research interests in previous studies, and recent studies have shown that machine learning techniques achieved better performance than traditional statistical ones. This paper applies support vector machines (SVMs) to the corporate credit rating problem in an attempt to suggest a new model with better explanatory power and stability. To serve this purpose, the researcher uses a grid-search technique using 5-fold cross-validation to find out the optimal parameter values of RBF kernel function of SVM. In addition, to evaluate the prediction accuracy of SVM, the researcher compares its performance with those of multiple discriminant analysis (MDA), case-based reasoning (CBR), and three-layer fully connected back-propagation neural networks (BPNs). The experiment results show that SVM outperforms the other methods.
doi_str_mv 10.1016/j.eswa.2006.04.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29504823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417406001205</els_id><sourcerecordid>29504823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-97203d9795a3742ea4c90950c171a514479bb513aecaa34d4cb4cfe98d71433f3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5g8sSXYsVPHEktVQUGqxAKz5V4u4CqNg-0W8e9xVGamu9Pde7r3EXLLWckZX9zvSozftqwYW5RMlow3Z2TGGyWKhdLinMyYrlUhuZKX5CrGHWNcMaZmZLMcx96BTc4P1Hc0HsbRh0SPCMkHurfw6QaMNHkKPuSVTUghYOsSzb0bPug4TTAZXJOLzvYRb_7qnLw_Pb6tnovN6_pltdwUILRKhVYVE61WurZCyQqtBJ3_Y8AVtzWXUunttubCIlgrZCthK6FD3bSKSyE6MSd3J98x-K8DxmT2LgL2vR3QH6KpsplsKpEPq9MhBB9jwM6Mwe1t-DGcmQmc2ZkJnJnAGSZNBpdFDycR5ghHh8FEcDhAThkyFdN695_8FwPMd8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29504823</pqid></control><display><type>article</type><title>Application of support vector machines to corporate credit rating prediction</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lee, Young-Chan</creator><creatorcontrib>Lee, Young-Chan</creatorcontrib><description>Corporate credit rating analysis has drawn a lot of research interests in previous studies, and recent studies have shown that machine learning techniques achieved better performance than traditional statistical ones. This paper applies support vector machines (SVMs) to the corporate credit rating problem in an attempt to suggest a new model with better explanatory power and stability. To serve this purpose, the researcher uses a grid-search technique using 5-fold cross-validation to find out the optimal parameter values of RBF kernel function of SVM. In addition, to evaluate the prediction accuracy of SVM, the researcher compares its performance with those of multiple discriminant analysis (MDA), case-based reasoning (CBR), and three-layer fully connected back-propagation neural networks (BPNs). The experiment results show that SVM outperforms the other methods.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2006.04.018</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>BPN ; CBR ; Credit rating ; MDA ; SVM</subject><ispartof>Expert systems with applications, 2007-07, Vol.33 (1), p.67-74</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-97203d9795a3742ea4c90950c171a514479bb513aecaa34d4cb4cfe98d71433f3</citedby><cites>FETCH-LOGICAL-c397t-97203d9795a3742ea4c90950c171a514479bb513aecaa34d4cb4cfe98d71433f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2006.04.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Lee, Young-Chan</creatorcontrib><title>Application of support vector machines to corporate credit rating prediction</title><title>Expert systems with applications</title><description>Corporate credit rating analysis has drawn a lot of research interests in previous studies, and recent studies have shown that machine learning techniques achieved better performance than traditional statistical ones. This paper applies support vector machines (SVMs) to the corporate credit rating problem in an attempt to suggest a new model with better explanatory power and stability. To serve this purpose, the researcher uses a grid-search technique using 5-fold cross-validation to find out the optimal parameter values of RBF kernel function of SVM. In addition, to evaluate the prediction accuracy of SVM, the researcher compares its performance with those of multiple discriminant analysis (MDA), case-based reasoning (CBR), and three-layer fully connected back-propagation neural networks (BPNs). The experiment results show that SVM outperforms the other methods.</description><subject>BPN</subject><subject>CBR</subject><subject>Credit rating</subject><subject>MDA</subject><subject>SVM</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5g8sSXYsVPHEktVQUGqxAKz5V4u4CqNg-0W8e9xVGamu9Pde7r3EXLLWckZX9zvSozftqwYW5RMlow3Z2TGGyWKhdLinMyYrlUhuZKX5CrGHWNcMaZmZLMcx96BTc4P1Hc0HsbRh0SPCMkHurfw6QaMNHkKPuSVTUghYOsSzb0bPug4TTAZXJOLzvYRb_7qnLw_Pb6tnovN6_pltdwUILRKhVYVE61WurZCyQqtBJ3_Y8AVtzWXUunttubCIlgrZCthK6FD3bSKSyE6MSd3J98x-K8DxmT2LgL2vR3QH6KpsplsKpEPq9MhBB9jwM6Mwe1t-DGcmQmc2ZkJnJnAGSZNBpdFDycR5ghHh8FEcDhAThkyFdN695_8FwPMd8w</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Lee, Young-Chan</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070701</creationdate><title>Application of support vector machines to corporate credit rating prediction</title><author>Lee, Young-Chan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-97203d9795a3742ea4c90950c171a514479bb513aecaa34d4cb4cfe98d71433f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>BPN</topic><topic>CBR</topic><topic>Credit rating</topic><topic>MDA</topic><topic>SVM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Young-Chan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Young-Chan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of support vector machines to corporate credit rating prediction</atitle><jtitle>Expert systems with applications</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>33</volume><issue>1</issue><spage>67</spage><epage>74</epage><pages>67-74</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>Corporate credit rating analysis has drawn a lot of research interests in previous studies, and recent studies have shown that machine learning techniques achieved better performance than traditional statistical ones. This paper applies support vector machines (SVMs) to the corporate credit rating problem in an attempt to suggest a new model with better explanatory power and stability. To serve this purpose, the researcher uses a grid-search technique using 5-fold cross-validation to find out the optimal parameter values of RBF kernel function of SVM. In addition, to evaluate the prediction accuracy of SVM, the researcher compares its performance with those of multiple discriminant analysis (MDA), case-based reasoning (CBR), and three-layer fully connected back-propagation neural networks (BPNs). The experiment results show that SVM outperforms the other methods.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2006.04.018</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2007-07, Vol.33 (1), p.67-74
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_29504823
source Access via ScienceDirect (Elsevier)
subjects BPN
CBR
Credit rating
MDA
SVM
title Application of support vector machines to corporate credit rating prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T01%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20support%20vector%20machines%20to%20corporate%20credit%20rating%20prediction&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Lee,%20Young-Chan&rft.date=2007-07-01&rft.volume=33&rft.issue=1&rft.spage=67&rft.epage=74&rft.pages=67-74&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2006.04.018&rft_dat=%3Cproquest_cross%3E29504823%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29504823&rft_id=info:pmid/&rft_els_id=S0957417406001205&rfr_iscdi=true