Application of support vector machines to corporate credit rating prediction
Corporate credit rating analysis has drawn a lot of research interests in previous studies, and recent studies have shown that machine learning techniques achieved better performance than traditional statistical ones. This paper applies support vector machines (SVMs) to the corporate credit rating p...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2007-07, Vol.33 (1), p.67-74 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | 1 |
container_start_page | 67 |
container_title | Expert systems with applications |
container_volume | 33 |
creator | Lee, Young-Chan |
description | Corporate credit rating analysis has drawn a lot of research interests in previous studies, and recent studies have shown that machine learning techniques achieved better performance than traditional statistical ones. This paper applies support vector machines (SVMs) to the corporate credit rating problem in an attempt to suggest a new model with better explanatory power and stability. To serve this purpose, the researcher uses a grid-search technique using 5-fold cross-validation to find out the optimal parameter values of RBF kernel function of SVM. In addition, to evaluate the prediction accuracy of SVM, the researcher compares its performance with those of multiple discriminant analysis (MDA), case-based reasoning (CBR), and three-layer fully connected back-propagation neural networks (BPNs). The experiment results show that SVM outperforms the other methods. |
doi_str_mv | 10.1016/j.eswa.2006.04.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29504823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417406001205</els_id><sourcerecordid>29504823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-97203d9795a3742ea4c90950c171a514479bb513aecaa34d4cb4cfe98d71433f3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5g8sSXYsVPHEktVQUGqxAKz5V4u4CqNg-0W8e9xVGamu9Pde7r3EXLLWckZX9zvSozftqwYW5RMlow3Z2TGGyWKhdLinMyYrlUhuZKX5CrGHWNcMaZmZLMcx96BTc4P1Hc0HsbRh0SPCMkHurfw6QaMNHkKPuSVTUghYOsSzb0bPug4TTAZXJOLzvYRb_7qnLw_Pb6tnovN6_pltdwUILRKhVYVE61WurZCyQqtBJ3_Y8AVtzWXUunttubCIlgrZCthK6FD3bSKSyE6MSd3J98x-K8DxmT2LgL2vR3QH6KpsplsKpEPq9MhBB9jwM6Mwe1t-DGcmQmc2ZkJnJnAGSZNBpdFDycR5ghHh8FEcDhAThkyFdN695_8FwPMd8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29504823</pqid></control><display><type>article</type><title>Application of support vector machines to corporate credit rating prediction</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lee, Young-Chan</creator><creatorcontrib>Lee, Young-Chan</creatorcontrib><description>Corporate credit rating analysis has drawn a lot of research interests in previous studies, and recent studies have shown that machine learning techniques achieved better performance than traditional statistical ones. This paper applies support vector machines (SVMs) to the corporate credit rating problem in an attempt to suggest a new model with better explanatory power and stability. To serve this purpose, the researcher uses a grid-search technique using 5-fold cross-validation to find out the optimal parameter values of RBF kernel function of SVM. In addition, to evaluate the prediction accuracy of SVM, the researcher compares its performance with those of multiple discriminant analysis (MDA), case-based reasoning (CBR), and three-layer fully connected back-propagation neural networks (BPNs). The experiment results show that SVM outperforms the other methods.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2006.04.018</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>BPN ; CBR ; Credit rating ; MDA ; SVM</subject><ispartof>Expert systems with applications, 2007-07, Vol.33 (1), p.67-74</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-97203d9795a3742ea4c90950c171a514479bb513aecaa34d4cb4cfe98d71433f3</citedby><cites>FETCH-LOGICAL-c397t-97203d9795a3742ea4c90950c171a514479bb513aecaa34d4cb4cfe98d71433f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2006.04.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Lee, Young-Chan</creatorcontrib><title>Application of support vector machines to corporate credit rating prediction</title><title>Expert systems with applications</title><description>Corporate credit rating analysis has drawn a lot of research interests in previous studies, and recent studies have shown that machine learning techniques achieved better performance than traditional statistical ones. This paper applies support vector machines (SVMs) to the corporate credit rating problem in an attempt to suggest a new model with better explanatory power and stability. To serve this purpose, the researcher uses a grid-search technique using 5-fold cross-validation to find out the optimal parameter values of RBF kernel function of SVM. In addition, to evaluate the prediction accuracy of SVM, the researcher compares its performance with those of multiple discriminant analysis (MDA), case-based reasoning (CBR), and three-layer fully connected back-propagation neural networks (BPNs). The experiment results show that SVM outperforms the other methods.</description><subject>BPN</subject><subject>CBR</subject><subject>Credit rating</subject><subject>MDA</subject><subject>SVM</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5g8sSXYsVPHEktVQUGqxAKz5V4u4CqNg-0W8e9xVGamu9Pde7r3EXLLWckZX9zvSozftqwYW5RMlow3Z2TGGyWKhdLinMyYrlUhuZKX5CrGHWNcMaZmZLMcx96BTc4P1Hc0HsbRh0SPCMkHurfw6QaMNHkKPuSVTUghYOsSzb0bPug4TTAZXJOLzvYRb_7qnLw_Pb6tnovN6_pltdwUILRKhVYVE61WurZCyQqtBJ3_Y8AVtzWXUunttubCIlgrZCthK6FD3bSKSyE6MSd3J98x-K8DxmT2LgL2vR3QH6KpsplsKpEPq9MhBB9jwM6Mwe1t-DGcmQmc2ZkJnJnAGSZNBpdFDycR5ghHh8FEcDhAThkyFdN695_8FwPMd8w</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Lee, Young-Chan</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070701</creationdate><title>Application of support vector machines to corporate credit rating prediction</title><author>Lee, Young-Chan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-97203d9795a3742ea4c90950c171a514479bb513aecaa34d4cb4cfe98d71433f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>BPN</topic><topic>CBR</topic><topic>Credit rating</topic><topic>MDA</topic><topic>SVM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Young-Chan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Young-Chan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of support vector machines to corporate credit rating prediction</atitle><jtitle>Expert systems with applications</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>33</volume><issue>1</issue><spage>67</spage><epage>74</epage><pages>67-74</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>Corporate credit rating analysis has drawn a lot of research interests in previous studies, and recent studies have shown that machine learning techniques achieved better performance than traditional statistical ones. This paper applies support vector machines (SVMs) to the corporate credit rating problem in an attempt to suggest a new model with better explanatory power and stability. To serve this purpose, the researcher uses a grid-search technique using 5-fold cross-validation to find out the optimal parameter values of RBF kernel function of SVM. In addition, to evaluate the prediction accuracy of SVM, the researcher compares its performance with those of multiple discriminant analysis (MDA), case-based reasoning (CBR), and three-layer fully connected back-propagation neural networks (BPNs). The experiment results show that SVM outperforms the other methods.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2006.04.018</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2007-07, Vol.33 (1), p.67-74 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_miscellaneous_29504823 |
source | Access via ScienceDirect (Elsevier) |
subjects | BPN CBR Credit rating MDA SVM |
title | Application of support vector machines to corporate credit rating prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T01%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20support%20vector%20machines%20to%20corporate%20credit%20rating%20prediction&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Lee,%20Young-Chan&rft.date=2007-07-01&rft.volume=33&rft.issue=1&rft.spage=67&rft.epage=74&rft.pages=67-74&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2006.04.018&rft_dat=%3Cproquest_cross%3E29504823%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29504823&rft_id=info:pmid/&rft_els_id=S0957417406001205&rfr_iscdi=true |