Application of support vector regression machines to the processing of end effects of Hilbert–Huang transform
The end effects of Hilbert–Huang transform are represented in two aspects. On the one hand, the end effects occur when the signal is decomposed by empirical mode decomposition (EMD) method. On the other hand, the end effects occur again while the Hilbert transforms are applied to the intrinsic mode...
Gespeichert in:
Veröffentlicht in: | Mechanical systems and signal processing 2007-04, Vol.21 (3), p.1197-1211 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1211 |
---|---|
container_issue | 3 |
container_start_page | 1197 |
container_title | Mechanical systems and signal processing |
container_volume | 21 |
creator | Cheng, Junsheng Yu, Dejie Yang, Yu |
description | The end effects of Hilbert–Huang transform are represented in two aspects. On the one hand, the end effects occur when the signal is decomposed by empirical mode decomposition (EMD) method. On the other hand, the end effects occur again while the Hilbert transforms are applied to the intrinsic mode functions (IMFs). To restrain the end effects of Hilbert–Huang transform, the support vector regression machines are used to predict the signals before the signal is decomposed by EMD method, thus the end effects could be restrained effectively and the IMFs with certain physical sense could be obtained. For the same purpose, the support vector regression machines are used again to predict the IMFs before the Hilbert transform of the IMFs, thus the accurate instantaneous frequencies and amplitudes could be obtained and the corresponding Hilbert spectrum with physical sense could be acquired. The analysis results from the simulation and experimental signals demonstrate that the end effects of Hilbert–Huang transform could be resolved effectively by the time series forecasting method based on support vector regression machines which is superior to that based on neural networks. |
doi_str_mv | 10.1016/j.ymssp.2005.09.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29498210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327005001445</els_id><sourcerecordid>29498210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-2b1f7b39ba94170d0a8c018d32d7c07ef2c9fcb7da8339a2490039b0f0f7f4523</originalsourceid><addsrcrecordid>eNp9kL9u2zAQxomgAeI6eYIsWtJNypGSJXHoEBhNXSBAl2YmKOro0JBElUcH8NZ36Bv2SUrVAbpl-nC433d_PsZuORQceH1_KE4j0VwIgE0BskhywVYcZJ1zwesPbAVt2-alaOCKfSQ6AICsoF4x_zDPgzM6Oj9l3mZ0nGcfYvaKJvqQBdwHJFqaozYvbkLKos_iC2Zz8GZpTfvFh1OfobXJRUu5c0OHIf759Xt31ImIQU9kfRiv2aXVA-HNm67Z8-OXH9td_vT967ftw1NuyrqKuei4bbpSdlpWvIEedGuAt30p-sZAg1YYaU3X9LotS6lFJQESDRZsY6uNKNfs03luOvPnESmq0ZHBYdAT-iMpISvZCg4JLM-gCZ4ooFVzcKMOJ8VBLeGqg_oXrlrCVSBVkuS6exuvyejBpveMo__WtuJ1s6kT9_nMYfr11WFQZBxOBnsXUlaq9-7dPX8BToqUQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29498210</pqid></control><display><type>article</type><title>Application of support vector regression machines to the processing of end effects of Hilbert–Huang transform</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Cheng, Junsheng ; Yu, Dejie ; Yang, Yu</creator><creatorcontrib>Cheng, Junsheng ; Yu, Dejie ; Yang, Yu</creatorcontrib><description>The end effects of Hilbert–Huang transform are represented in two aspects. On the one hand, the end effects occur when the signal is decomposed by empirical mode decomposition (EMD) method. On the other hand, the end effects occur again while the Hilbert transforms are applied to the intrinsic mode functions (IMFs). To restrain the end effects of Hilbert–Huang transform, the support vector regression machines are used to predict the signals before the signal is decomposed by EMD method, thus the end effects could be restrained effectively and the IMFs with certain physical sense could be obtained. For the same purpose, the support vector regression machines are used again to predict the IMFs before the Hilbert transform of the IMFs, thus the accurate instantaneous frequencies and amplitudes could be obtained and the corresponding Hilbert spectrum with physical sense could be acquired. The analysis results from the simulation and experimental signals demonstrate that the end effects of Hilbert–Huang transform could be resolved effectively by the time series forecasting method based on support vector regression machines which is superior to that based on neural networks.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2005.09.005</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>EMD ; End effects ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Hilbert transform ; Hilbert–Huang transform ; Measurement and testing methods ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Support vector regression machines</subject><ispartof>Mechanical systems and signal processing, 2007-04, Vol.21 (3), p.1197-1211</ispartof><rights>2005 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-2b1f7b39ba94170d0a8c018d32d7c07ef2c9fcb7da8339a2490039b0f0f7f4523</citedby><cites>FETCH-LOGICAL-c364t-2b1f7b39ba94170d0a8c018d32d7c07ef2c9fcb7da8339a2490039b0f0f7f4523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymssp.2005.09.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18416756$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Junsheng</creatorcontrib><creatorcontrib>Yu, Dejie</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><title>Application of support vector regression machines to the processing of end effects of Hilbert–Huang transform</title><title>Mechanical systems and signal processing</title><description>The end effects of Hilbert–Huang transform are represented in two aspects. On the one hand, the end effects occur when the signal is decomposed by empirical mode decomposition (EMD) method. On the other hand, the end effects occur again while the Hilbert transforms are applied to the intrinsic mode functions (IMFs). To restrain the end effects of Hilbert–Huang transform, the support vector regression machines are used to predict the signals before the signal is decomposed by EMD method, thus the end effects could be restrained effectively and the IMFs with certain physical sense could be obtained. For the same purpose, the support vector regression machines are used again to predict the IMFs before the Hilbert transform of the IMFs, thus the accurate instantaneous frequencies and amplitudes could be obtained and the corresponding Hilbert spectrum with physical sense could be acquired. The analysis results from the simulation and experimental signals demonstrate that the end effects of Hilbert–Huang transform could be resolved effectively by the time series forecasting method based on support vector regression machines which is superior to that based on neural networks.</description><subject>EMD</subject><subject>End effects</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hilbert transform</subject><subject>Hilbert–Huang transform</subject><subject>Measurement and testing methods</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Support vector regression machines</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kL9u2zAQxomgAeI6eYIsWtJNypGSJXHoEBhNXSBAl2YmKOro0JBElUcH8NZ36Bv2SUrVAbpl-nC433d_PsZuORQceH1_KE4j0VwIgE0BskhywVYcZJ1zwesPbAVt2-alaOCKfSQ6AICsoF4x_zDPgzM6Oj9l3mZ0nGcfYvaKJvqQBdwHJFqaozYvbkLKos_iC2Zz8GZpTfvFh1OfobXJRUu5c0OHIf759Xt31ImIQU9kfRiv2aXVA-HNm67Z8-OXH9td_vT967ftw1NuyrqKuei4bbpSdlpWvIEedGuAt30p-sZAg1YYaU3X9LotS6lFJQESDRZsY6uNKNfs03luOvPnESmq0ZHBYdAT-iMpISvZCg4JLM-gCZ4ooFVzcKMOJ8VBLeGqg_oXrlrCVSBVkuS6exuvyejBpveMo__WtuJ1s6kT9_nMYfr11WFQZBxOBnsXUlaq9-7dPX8BToqUQw</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Cheng, Junsheng</creator><creator>Yu, Dejie</creator><creator>Yang, Yu</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070401</creationdate><title>Application of support vector regression machines to the processing of end effects of Hilbert–Huang transform</title><author>Cheng, Junsheng ; Yu, Dejie ; Yang, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-2b1f7b39ba94170d0a8c018d32d7c07ef2c9fcb7da8339a2490039b0f0f7f4523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>EMD</topic><topic>End effects</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hilbert transform</topic><topic>Hilbert–Huang transform</topic><topic>Measurement and testing methods</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Support vector regression machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Junsheng</creatorcontrib><creatorcontrib>Yu, Dejie</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Junsheng</au><au>Yu, Dejie</au><au>Yang, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of support vector regression machines to the processing of end effects of Hilbert–Huang transform</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>21</volume><issue>3</issue><spage>1197</spage><epage>1211</epage><pages>1197-1211</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>The end effects of Hilbert–Huang transform are represented in two aspects. On the one hand, the end effects occur when the signal is decomposed by empirical mode decomposition (EMD) method. On the other hand, the end effects occur again while the Hilbert transforms are applied to the intrinsic mode functions (IMFs). To restrain the end effects of Hilbert–Huang transform, the support vector regression machines are used to predict the signals before the signal is decomposed by EMD method, thus the end effects could be restrained effectively and the IMFs with certain physical sense could be obtained. For the same purpose, the support vector regression machines are used again to predict the IMFs before the Hilbert transform of the IMFs, thus the accurate instantaneous frequencies and amplitudes could be obtained and the corresponding Hilbert spectrum with physical sense could be acquired. The analysis results from the simulation and experimental signals demonstrate that the end effects of Hilbert–Huang transform could be resolved effectively by the time series forecasting method based on support vector regression machines which is superior to that based on neural networks.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2005.09.005</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-3270 |
ispartof | Mechanical systems and signal processing, 2007-04, Vol.21 (3), p.1197-1211 |
issn | 0888-3270 1096-1216 |
language | eng |
recordid | cdi_proquest_miscellaneous_29498210 |
source | Elsevier ScienceDirect Journals Complete |
subjects | EMD End effects Exact sciences and technology Fundamental areas of phenomenology (including applications) Hilbert transform Hilbert–Huang transform Measurement and testing methods Physics Solid mechanics Structural and continuum mechanics Support vector regression machines |
title | Application of support vector regression machines to the processing of end effects of Hilbert–Huang transform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A22%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20support%20vector%20regression%20machines%20to%20the%20processing%20of%20end%20effects%20of%20Hilbert%E2%80%93Huang%20transform&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Cheng,%20Junsheng&rft.date=2007-04-01&rft.volume=21&rft.issue=3&rft.spage=1197&rft.epage=1211&rft.pages=1197-1211&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2005.09.005&rft_dat=%3Cproquest_cross%3E29498210%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29498210&rft_id=info:pmid/&rft_els_id=S0888327005001445&rfr_iscdi=true |