A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness-part II: nonlinear applications

In this work the recently proposed Reduced Enhanced Solid‐Shell (RESS) finite element, based on the enhanced assumed strain (EAS) method and a one‐point quadrature integration scheme, is extended in order to account for large deformation elastoplastic thin‐shell problems. One of the main features of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2006-07, Vol.67 (2), p.160-188
Hauptverfasser: Alves de Sousa, Ricardo J., Cardoso, Rui P. R., Fontes Valente, Robertt A., Yoon, Jeong-Whan, Grácio, José J., Natal Jorge, Renato M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work the recently proposed Reduced Enhanced Solid‐Shell (RESS) finite element, based on the enhanced assumed strain (EAS) method and a one‐point quadrature integration scheme, is extended in order to account for large deformation elastoplastic thin‐shell problems. One of the main features of this finite element consists in its minimal number of enhancing parameters (one), sufficient to circumvent the well‐known Poisson and volumetric locking phenomena, leading to a computationally efficient performance when compared to other 3D or solid‐shell enhanced strain elements. Furthermore, the employed numerical integration accounts for an arbitrary number of integration points through the thickness direction within a single layer of elements. The EAS formulation comprises an additive split of the Green–Lagrange material strain tensor, making the inclusion of nonlinear kinematics a straightforward task. A corotational coordinate system is used to integrate the constitutive law and to ensure incremental objectivity. A physical stabilization procedure is implemented in order to correct the element's rank deficiencies. A variety of shell‐type numerical benchmarks including plasticity, large deformations and contact are carried out, and good results are obtained when compared to well‐established formulations in the literature. Copyright © 2006 John Wiley & Sons, Ltd.
ISSN:0029-5981
1097-0207
DOI:10.1002/nme.1609