System-Level Model and Stochastic Optimal Control for a PEM Fuel Cell Hybrid Vehicle

System-level modeling and control strategy development for a fuel cell hybrid vehicle (FCHV) are presented in this paper. A reduced-order fuel cell model is created to accurately predict the fuel cell system efficiency while retaining dynamic effects of important variables. The fuel cell system mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamic systems, measurement, and control measurement, and control, 2006-12, Vol.128 (4), p.878-890
Hauptverfasser: Lin, Chan-Chiao, Kim, Min-Joong, Peng, Huei, Grizzle, Jessy W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 890
container_issue 4
container_start_page 878
container_title Journal of dynamic systems, measurement, and control
container_volume 128
creator Lin, Chan-Chiao
Kim, Min-Joong
Peng, Huei
Grizzle, Jessy W.
description System-level modeling and control strategy development for a fuel cell hybrid vehicle (FCHV) are presented in this paper. A reduced-order fuel cell model is created to accurately predict the fuel cell system efficiency while retaining dynamic effects of important variables. The fuel cell system model is then integrated with a DC/DC converter, a Li-ion battery, an electric drive, and tire/vehicle dynamics to form an FCHV. In order to optimize the power management strategy of the FCHV, we develop a stochastic design approach based on the Markov chain modeling and stochastic dynamic programming (SDP). The driver demand is modeled as a Markov process to represent the future uncertainty under diverse driving conditions. The infinite-horizon SDP solution generates a stationary state-feedback control policy to achieve optimal power management between the fuel cell system and battery. Simulation results over different driving cycles are presented to demonstrate the effectiveness of the proposed stochastic approach.
doi_str_mv 10.1115/1.2362785
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29485002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29485002</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-b268ddad86a730d93999dbec2e8f1cd5ef1d015a5acc603d8bd991da3ead29f83</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKsHz15yUfCwNR_7kRyltFZoqdDqNcwmWbpld1OTXaH_3kgLXmYuz7zM8yJ0T8mEUpq90AnjOStEdoFGNGMikYSJSzQihLGEpDy9Rjch7AmhnGf5CG03x9DbNlnaH9vglTNxQmfwpnd6B6GvNV4f-rqFBk9d13vX4Mp5DPhjtsLzIdJT2zR4cSx9bfCX3dW6sbfoqoIm2LvzHqPP-Ww7XSTL9dv79HWZAC_yPilZLowBI3IoODGSSylNaTWzoqLaZLaihtAMMtA6J9yI0khJDXALhslK8DF6OuUevPsebOhVWwcd_4HOuiEoJlORRfMIPp9A7V0I3lbq4KOTPypK1F9viqpzb5F9PIdC0NBUHjpdh_8DwdNUpEXkHk4chNaqvRt8F11VmudECv4LGo11KA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29485002</pqid></control><display><type>article</type><title>System-Level Model and Stochastic Optimal Control for a PEM Fuel Cell Hybrid Vehicle</title><source>ASME Transactions Journals (Current)</source><creator>Lin, Chan-Chiao ; Kim, Min-Joong ; Peng, Huei ; Grizzle, Jessy W.</creator><creatorcontrib>Lin, Chan-Chiao ; Kim, Min-Joong ; Peng, Huei ; Grizzle, Jessy W.</creatorcontrib><description>System-level modeling and control strategy development for a fuel cell hybrid vehicle (FCHV) are presented in this paper. A reduced-order fuel cell model is created to accurately predict the fuel cell system efficiency while retaining dynamic effects of important variables. The fuel cell system model is then integrated with a DC/DC converter, a Li-ion battery, an electric drive, and tire/vehicle dynamics to form an FCHV. In order to optimize the power management strategy of the FCHV, we develop a stochastic design approach based on the Markov chain modeling and stochastic dynamic programming (SDP). The driver demand is modeled as a Markov process to represent the future uncertainty under diverse driving conditions. The infinite-horizon SDP solution generates a stationary state-feedback control policy to achieve optimal power management between the fuel cell system and battery. Simulation results over different driving cycles are presented to demonstrate the effectiveness of the proposed stochastic approach.</description><identifier>ISSN: 0022-0434</identifier><identifier>EISSN: 1528-9028</identifier><identifier>DOI: 10.1115/1.2362785</identifier><identifier>CODEN: JDSMAA</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Convertors ; Electrical engineering. Electrical power engineering ; Electrical machines ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Modelling and identification ; Optimal control</subject><ispartof>Journal of dynamic systems, measurement, and control, 2006-12, Vol.128 (4), p.878-890</ispartof><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-b268ddad86a730d93999dbec2e8f1cd5ef1d015a5acc603d8bd991da3ead29f83</citedby><cites>FETCH-LOGICAL-a376t-b268ddad86a730d93999dbec2e8f1cd5ef1d015a5acc603d8bd991da3ead29f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38497</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18344847$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Chan-Chiao</creatorcontrib><creatorcontrib>Kim, Min-Joong</creatorcontrib><creatorcontrib>Peng, Huei</creatorcontrib><creatorcontrib>Grizzle, Jessy W.</creatorcontrib><title>System-Level Model and Stochastic Optimal Control for a PEM Fuel Cell Hybrid Vehicle</title><title>Journal of dynamic systems, measurement, and control</title><addtitle>J. Dyn. Sys., Meas., Control</addtitle><description>System-level modeling and control strategy development for a fuel cell hybrid vehicle (FCHV) are presented in this paper. A reduced-order fuel cell model is created to accurately predict the fuel cell system efficiency while retaining dynamic effects of important variables. The fuel cell system model is then integrated with a DC/DC converter, a Li-ion battery, an electric drive, and tire/vehicle dynamics to form an FCHV. In order to optimize the power management strategy of the FCHV, we develop a stochastic design approach based on the Markov chain modeling and stochastic dynamic programming (SDP). The driver demand is modeled as a Markov process to represent the future uncertainty under diverse driving conditions. The infinite-horizon SDP solution generates a stationary state-feedback control policy to achieve optimal power management between the fuel cell system and battery. Simulation results over different driving cycles are presented to demonstrate the effectiveness of the proposed stochastic approach.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Convertors</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical machines</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Modelling and identification</subject><subject>Optimal control</subject><issn>0022-0434</issn><issn>1528-9028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKsHz15yUfCwNR_7kRyltFZoqdDqNcwmWbpld1OTXaH_3kgLXmYuz7zM8yJ0T8mEUpq90AnjOStEdoFGNGMikYSJSzQihLGEpDy9Rjch7AmhnGf5CG03x9DbNlnaH9vglTNxQmfwpnd6B6GvNV4f-rqFBk9d13vX4Mp5DPhjtsLzIdJT2zR4cSx9bfCX3dW6sbfoqoIm2LvzHqPP-Ww7XSTL9dv79HWZAC_yPilZLowBI3IoODGSSylNaTWzoqLaZLaihtAMMtA6J9yI0khJDXALhslK8DF6OuUevPsebOhVWwcd_4HOuiEoJlORRfMIPp9A7V0I3lbq4KOTPypK1F9viqpzb5F9PIdC0NBUHjpdh_8DwdNUpEXkHk4chNaqvRt8F11VmudECv4LGo11KA</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Lin, Chan-Chiao</creator><creator>Kim, Min-Joong</creator><creator>Peng, Huei</creator><creator>Grizzle, Jessy W.</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20061201</creationdate><title>System-Level Model and Stochastic Optimal Control for a PEM Fuel Cell Hybrid Vehicle</title><author>Lin, Chan-Chiao ; Kim, Min-Joong ; Peng, Huei ; Grizzle, Jessy W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-b268ddad86a730d93999dbec2e8f1cd5ef1d015a5acc603d8bd991da3ead29f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Convertors</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical machines</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Modelling and identification</topic><topic>Optimal control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Chan-Chiao</creatorcontrib><creatorcontrib>Kim, Min-Joong</creatorcontrib><creatorcontrib>Peng, Huei</creatorcontrib><creatorcontrib>Grizzle, Jessy W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of dynamic systems, measurement, and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Chan-Chiao</au><au>Kim, Min-Joong</au><au>Peng, Huei</au><au>Grizzle, Jessy W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>System-Level Model and Stochastic Optimal Control for a PEM Fuel Cell Hybrid Vehicle</atitle><jtitle>Journal of dynamic systems, measurement, and control</jtitle><stitle>J. Dyn. Sys., Meas., Control</stitle><date>2006-12-01</date><risdate>2006</risdate><volume>128</volume><issue>4</issue><spage>878</spage><epage>890</epage><pages>878-890</pages><issn>0022-0434</issn><eissn>1528-9028</eissn><coden>JDSMAA</coden><abstract>System-level modeling and control strategy development for a fuel cell hybrid vehicle (FCHV) are presented in this paper. A reduced-order fuel cell model is created to accurately predict the fuel cell system efficiency while retaining dynamic effects of important variables. The fuel cell system model is then integrated with a DC/DC converter, a Li-ion battery, an electric drive, and tire/vehicle dynamics to form an FCHV. In order to optimize the power management strategy of the FCHV, we develop a stochastic design approach based on the Markov chain modeling and stochastic dynamic programming (SDP). The driver demand is modeled as a Markov process to represent the future uncertainty under diverse driving conditions. The infinite-horizon SDP solution generates a stationary state-feedback control policy to achieve optimal power management between the fuel cell system and battery. Simulation results over different driving cycles are presented to demonstrate the effectiveness of the proposed stochastic approach.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2362785</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0434
ispartof Journal of dynamic systems, measurement, and control, 2006-12, Vol.128 (4), p.878-890
issn 0022-0434
1528-9028
language eng
recordid cdi_proquest_miscellaneous_29485002
source ASME Transactions Journals (Current)
subjects Applied sciences
Computer science
control theory
systems
Control theory. Systems
Convertors
Electrical engineering. Electrical power engineering
Electrical machines
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Modelling and identification
Optimal control
title System-Level Model and Stochastic Optimal Control for a PEM Fuel Cell Hybrid Vehicle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T03%3A36%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=System-Level%20Model%20and%20Stochastic%20Optimal%20Control%20for%20a%20PEM%20Fuel%20Cell%20Hybrid%20Vehicle&rft.jtitle=Journal%20of%20dynamic%20systems,%20measurement,%20and%20control&rft.au=Lin,%20Chan-Chiao&rft.date=2006-12-01&rft.volume=128&rft.issue=4&rft.spage=878&rft.epage=890&rft.pages=878-890&rft.issn=0022-0434&rft.eissn=1528-9028&rft.coden=JDSMAA&rft_id=info:doi/10.1115/1.2362785&rft_dat=%3Cproquest_cross%3E29485002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29485002&rft_id=info:pmid/&rfr_iscdi=true