System-Level Model and Stochastic Optimal Control for a PEM Fuel Cell Hybrid Vehicle
System-level modeling and control strategy development for a fuel cell hybrid vehicle (FCHV) are presented in this paper. A reduced-order fuel cell model is created to accurately predict the fuel cell system efficiency while retaining dynamic effects of important variables. The fuel cell system mode...
Gespeichert in:
Veröffentlicht in: | Journal of dynamic systems, measurement, and control measurement, and control, 2006-12, Vol.128 (4), p.878-890 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 890 |
---|---|
container_issue | 4 |
container_start_page | 878 |
container_title | Journal of dynamic systems, measurement, and control |
container_volume | 128 |
creator | Lin, Chan-Chiao Kim, Min-Joong Peng, Huei Grizzle, Jessy W. |
description | System-level modeling and control strategy development for a fuel cell hybrid vehicle (FCHV) are presented in this paper. A reduced-order fuel cell model is created to accurately predict the fuel cell system efficiency while retaining dynamic effects of important variables. The fuel cell system model is then integrated with a DC/DC converter, a Li-ion battery, an electric drive, and tire/vehicle dynamics to form an FCHV. In order to optimize the power management strategy of the FCHV, we develop a stochastic design approach based on the Markov chain modeling and stochastic dynamic programming (SDP). The driver demand is modeled as a Markov process to represent the future uncertainty under diverse driving conditions. The infinite-horizon SDP solution generates a stationary state-feedback control policy to achieve optimal power management between the fuel cell system and battery. Simulation results over different driving cycles are presented to demonstrate the effectiveness of the proposed stochastic approach. |
doi_str_mv | 10.1115/1.2362785 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29485002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29485002</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-b268ddad86a730d93999dbec2e8f1cd5ef1d015a5acc603d8bd991da3ead29f83</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKsHz15yUfCwNR_7kRyltFZoqdDqNcwmWbpld1OTXaH_3kgLXmYuz7zM8yJ0T8mEUpq90AnjOStEdoFGNGMikYSJSzQihLGEpDy9Rjch7AmhnGf5CG03x9DbNlnaH9vglTNxQmfwpnd6B6GvNV4f-rqFBk9d13vX4Mp5DPhjtsLzIdJT2zR4cSx9bfCX3dW6sbfoqoIm2LvzHqPP-Ww7XSTL9dv79HWZAC_yPilZLowBI3IoODGSSylNaTWzoqLaZLaihtAMMtA6J9yI0khJDXALhslK8DF6OuUevPsebOhVWwcd_4HOuiEoJlORRfMIPp9A7V0I3lbq4KOTPypK1F9viqpzb5F9PIdC0NBUHjpdh_8DwdNUpEXkHk4chNaqvRt8F11VmudECv4LGo11KA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29485002</pqid></control><display><type>article</type><title>System-Level Model and Stochastic Optimal Control for a PEM Fuel Cell Hybrid Vehicle</title><source>ASME Transactions Journals (Current)</source><creator>Lin, Chan-Chiao ; Kim, Min-Joong ; Peng, Huei ; Grizzle, Jessy W.</creator><creatorcontrib>Lin, Chan-Chiao ; Kim, Min-Joong ; Peng, Huei ; Grizzle, Jessy W.</creatorcontrib><description>System-level modeling and control strategy development for a fuel cell hybrid vehicle (FCHV) are presented in this paper. A reduced-order fuel cell model is created to accurately predict the fuel cell system efficiency while retaining dynamic effects of important variables. The fuel cell system model is then integrated with a DC/DC converter, a Li-ion battery, an electric drive, and tire/vehicle dynamics to form an FCHV. In order to optimize the power management strategy of the FCHV, we develop a stochastic design approach based on the Markov chain modeling and stochastic dynamic programming (SDP). The driver demand is modeled as a Markov process to represent the future uncertainty under diverse driving conditions. The infinite-horizon SDP solution generates a stationary state-feedback control policy to achieve optimal power management between the fuel cell system and battery. Simulation results over different driving cycles are presented to demonstrate the effectiveness of the proposed stochastic approach.</description><identifier>ISSN: 0022-0434</identifier><identifier>EISSN: 1528-9028</identifier><identifier>DOI: 10.1115/1.2362785</identifier><identifier>CODEN: JDSMAA</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Convertors ; Electrical engineering. Electrical power engineering ; Electrical machines ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Modelling and identification ; Optimal control</subject><ispartof>Journal of dynamic systems, measurement, and control, 2006-12, Vol.128 (4), p.878-890</ispartof><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-b268ddad86a730d93999dbec2e8f1cd5ef1d015a5acc603d8bd991da3ead29f83</citedby><cites>FETCH-LOGICAL-a376t-b268ddad86a730d93999dbec2e8f1cd5ef1d015a5acc603d8bd991da3ead29f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38497</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18344847$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Chan-Chiao</creatorcontrib><creatorcontrib>Kim, Min-Joong</creatorcontrib><creatorcontrib>Peng, Huei</creatorcontrib><creatorcontrib>Grizzle, Jessy W.</creatorcontrib><title>System-Level Model and Stochastic Optimal Control for a PEM Fuel Cell Hybrid Vehicle</title><title>Journal of dynamic systems, measurement, and control</title><addtitle>J. Dyn. Sys., Meas., Control</addtitle><description>System-level modeling and control strategy development for a fuel cell hybrid vehicle (FCHV) are presented in this paper. A reduced-order fuel cell model is created to accurately predict the fuel cell system efficiency while retaining dynamic effects of important variables. The fuel cell system model is then integrated with a DC/DC converter, a Li-ion battery, an electric drive, and tire/vehicle dynamics to form an FCHV. In order to optimize the power management strategy of the FCHV, we develop a stochastic design approach based on the Markov chain modeling and stochastic dynamic programming (SDP). The driver demand is modeled as a Markov process to represent the future uncertainty under diverse driving conditions. The infinite-horizon SDP solution generates a stationary state-feedback control policy to achieve optimal power management between the fuel cell system and battery. Simulation results over different driving cycles are presented to demonstrate the effectiveness of the proposed stochastic approach.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Convertors</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical machines</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Modelling and identification</subject><subject>Optimal control</subject><issn>0022-0434</issn><issn>1528-9028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKsHz15yUfCwNR_7kRyltFZoqdDqNcwmWbpld1OTXaH_3kgLXmYuz7zM8yJ0T8mEUpq90AnjOStEdoFGNGMikYSJSzQihLGEpDy9Rjch7AmhnGf5CG03x9DbNlnaH9vglTNxQmfwpnd6B6GvNV4f-rqFBk9d13vX4Mp5DPhjtsLzIdJT2zR4cSx9bfCX3dW6sbfoqoIm2LvzHqPP-Ww7XSTL9dv79HWZAC_yPilZLowBI3IoODGSSylNaTWzoqLaZLaihtAMMtA6J9yI0khJDXALhslK8DF6OuUevPsebOhVWwcd_4HOuiEoJlORRfMIPp9A7V0I3lbq4KOTPypK1F9viqpzb5F9PIdC0NBUHjpdh_8DwdNUpEXkHk4chNaqvRt8F11VmudECv4LGo11KA</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Lin, Chan-Chiao</creator><creator>Kim, Min-Joong</creator><creator>Peng, Huei</creator><creator>Grizzle, Jessy W.</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20061201</creationdate><title>System-Level Model and Stochastic Optimal Control for a PEM Fuel Cell Hybrid Vehicle</title><author>Lin, Chan-Chiao ; Kim, Min-Joong ; Peng, Huei ; Grizzle, Jessy W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-b268ddad86a730d93999dbec2e8f1cd5ef1d015a5acc603d8bd991da3ead29f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Convertors</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical machines</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Modelling and identification</topic><topic>Optimal control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Chan-Chiao</creatorcontrib><creatorcontrib>Kim, Min-Joong</creatorcontrib><creatorcontrib>Peng, Huei</creatorcontrib><creatorcontrib>Grizzle, Jessy W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of dynamic systems, measurement, and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Chan-Chiao</au><au>Kim, Min-Joong</au><au>Peng, Huei</au><au>Grizzle, Jessy W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>System-Level Model and Stochastic Optimal Control for a PEM Fuel Cell Hybrid Vehicle</atitle><jtitle>Journal of dynamic systems, measurement, and control</jtitle><stitle>J. Dyn. Sys., Meas., Control</stitle><date>2006-12-01</date><risdate>2006</risdate><volume>128</volume><issue>4</issue><spage>878</spage><epage>890</epage><pages>878-890</pages><issn>0022-0434</issn><eissn>1528-9028</eissn><coden>JDSMAA</coden><abstract>System-level modeling and control strategy development for a fuel cell hybrid vehicle (FCHV) are presented in this paper. A reduced-order fuel cell model is created to accurately predict the fuel cell system efficiency while retaining dynamic effects of important variables. The fuel cell system model is then integrated with a DC/DC converter, a Li-ion battery, an electric drive, and tire/vehicle dynamics to form an FCHV. In order to optimize the power management strategy of the FCHV, we develop a stochastic design approach based on the Markov chain modeling and stochastic dynamic programming (SDP). The driver demand is modeled as a Markov process to represent the future uncertainty under diverse driving conditions. The infinite-horizon SDP solution generates a stationary state-feedback control policy to achieve optimal power management between the fuel cell system and battery. Simulation results over different driving cycles are presented to demonstrate the effectiveness of the proposed stochastic approach.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2362785</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0434 |
ispartof | Journal of dynamic systems, measurement, and control, 2006-12, Vol.128 (4), p.878-890 |
issn | 0022-0434 1528-9028 |
language | eng |
recordid | cdi_proquest_miscellaneous_29485002 |
source | ASME Transactions Journals (Current) |
subjects | Applied sciences Computer science control theory systems Control theory. Systems Convertors Electrical engineering. Electrical power engineering Electrical machines Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Modelling and identification Optimal control |
title | System-Level Model and Stochastic Optimal Control for a PEM Fuel Cell Hybrid Vehicle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T03%3A36%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=System-Level%20Model%20and%20Stochastic%20Optimal%20Control%20for%20a%20PEM%20Fuel%20Cell%20Hybrid%20Vehicle&rft.jtitle=Journal%20of%20dynamic%20systems,%20measurement,%20and%20control&rft.au=Lin,%20Chan-Chiao&rft.date=2006-12-01&rft.volume=128&rft.issue=4&rft.spage=878&rft.epage=890&rft.pages=878-890&rft.issn=0022-0434&rft.eissn=1528-9028&rft.coden=JDSMAA&rft_id=info:doi/10.1115/1.2362785&rft_dat=%3Cproquest_cross%3E29485002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29485002&rft_id=info:pmid/&rfr_iscdi=true |