Viscoelastic toughening of aluminosilicate refractory ceramics

This paper presents the results of a combined experimental and theoretical study of the effects of Na 2O addition on the microstructure, viscoelastic toughening and thermal shock resistance of aluminosilicate refractory ceramics. The Na 2O was added to change the viscosity–temperature characteristic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2006-06, Vol.54 (10), p.2665-2675
Hauptverfasser: Baker, Timothy J., Zimba, Josephat, Akpan, Edem T., Bashir, Ishmael, Watola, Conrad T., Soboyejo, Winston O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2675
container_issue 10
container_start_page 2665
container_title Acta materialia
container_volume 54
creator Baker, Timothy J.
Zimba, Josephat
Akpan, Edem T.
Bashir, Ishmael
Watola, Conrad T.
Soboyejo, Winston O.
description This paper presents the results of a combined experimental and theoretical study of the effects of Na 2O addition on the microstructure, viscoelastic toughening and thermal shock resistance of aluminosilicate refractory ceramics. The Na 2O was added to change the viscosity–temperature characteristics of the glassy phase and to promote viscoelastic toughening. It was observed that doping of an aluminosilicate with 4–6 wt.% Na 2O significantly alters the microstructure, from mullite within a glassy matrix to aluminum oxide laths within a glassy matrix. The glassy matrix is shown to form viscoelastic ligaments. These bridge cracks form and grow during cold shock from elevated temperatures (1100–1400 °C). The viscoelastic bridges have the net effect of shielding the crack tips from transient thermal stresses due to thermal shock. They therefore improve the cold shock resistance of the ceramic. The insights developed from the experiments were used to guide the development of a fracture mechanics model for the prediction of viscoelastic toughening due to crack bridging.
doi_str_mv 10.1016/j.actamat.2006.02.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29484241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645406001315</els_id><sourcerecordid>1082188043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-9a29064f3443e43e37d1fa9ed145452a0dfb45e0f4ab167a8bc255a565a596a23</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhhdRsFZ_grAXxcuuk6_9uChS_IKCF_UaptnZmrK70WQr9N-b0oI3hYTM4Zl5J0-SnDPIGbDiepWjGbHHMecARQ48B6gPkgmrSpFxqcRhrIWqs0IqeZychLACYLyUMElu3m0wjjoMozXp6NbLDxrssExdm2K37u3ggu2swZFST62PSc5vUkMee2vCaXLUYhfobP9Ok7eH-9fZUzZ_eXye3c0zI0GMWY28hkK2QkpB8YiyYS3W1LC4keIITbuQiqCVuGBFidXCcKVQFfHWBXIxTS53cz-9-1pTGHUf96auw4HcOmhey0pyySJ49SfIoOKsqkCKiKodarwLIX5Of3rbo99ESG_F6pXei9VbsRq4jmJj38U-AoPBLjoZjA2_zWUFINh2_u2Ooyjm25LXwVgaDDXWkxl14-w_ST8sYJDS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082188043</pqid></control><display><type>article</type><title>Viscoelastic toughening of aluminosilicate refractory ceramics</title><source>Access via ScienceDirect (Elsevier)</source><creator>Baker, Timothy J. ; Zimba, Josephat ; Akpan, Edem T. ; Bashir, Ishmael ; Watola, Conrad T. ; Soboyejo, Winston O.</creator><creatorcontrib>Baker, Timothy J. ; Zimba, Josephat ; Akpan, Edem T. ; Bashir, Ishmael ; Watola, Conrad T. ; Soboyejo, Winston O.</creatorcontrib><description>This paper presents the results of a combined experimental and theoretical study of the effects of Na 2O addition on the microstructure, viscoelastic toughening and thermal shock resistance of aluminosilicate refractory ceramics. The Na 2O was added to change the viscosity–temperature characteristics of the glassy phase and to promote viscoelastic toughening. It was observed that doping of an aluminosilicate with 4–6 wt.% Na 2O significantly alters the microstructure, from mullite within a glassy matrix to aluminum oxide laths within a glassy matrix. The glassy matrix is shown to form viscoelastic ligaments. These bridge cracks form and grow during cold shock from elevated temperatures (1100–1400 °C). The viscoelastic bridges have the net effect of shielding the crack tips from transient thermal stresses due to thermal shock. They therefore improve the cold shock resistance of the ceramic. The insights developed from the experiments were used to guide the development of a fracture mechanics model for the prediction of viscoelastic toughening due to crack bridging.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2006.02.009</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aluminosilicates ; Aluminum oxide ; Aluminum silicates ; Applied sciences ; Ceramic ; Ceramics ; Exact sciences and technology ; Glassy ; Mathematical models ; Metals. Metallurgy ; Microstructure ; Modeling ; Toughening ; Viscoelastic bridges ; Viscoelasticity</subject><ispartof>Acta materialia, 2006-06, Vol.54 (10), p.2665-2675</ispartof><rights>2006 Acta Materialia Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-9a29064f3443e43e37d1fa9ed145452a0dfb45e0f4ab167a8bc255a565a596a23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2006.02.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17800313$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baker, Timothy J.</creatorcontrib><creatorcontrib>Zimba, Josephat</creatorcontrib><creatorcontrib>Akpan, Edem T.</creatorcontrib><creatorcontrib>Bashir, Ishmael</creatorcontrib><creatorcontrib>Watola, Conrad T.</creatorcontrib><creatorcontrib>Soboyejo, Winston O.</creatorcontrib><title>Viscoelastic toughening of aluminosilicate refractory ceramics</title><title>Acta materialia</title><description>This paper presents the results of a combined experimental and theoretical study of the effects of Na 2O addition on the microstructure, viscoelastic toughening and thermal shock resistance of aluminosilicate refractory ceramics. The Na 2O was added to change the viscosity–temperature characteristics of the glassy phase and to promote viscoelastic toughening. It was observed that doping of an aluminosilicate with 4–6 wt.% Na 2O significantly alters the microstructure, from mullite within a glassy matrix to aluminum oxide laths within a glassy matrix. The glassy matrix is shown to form viscoelastic ligaments. These bridge cracks form and grow during cold shock from elevated temperatures (1100–1400 °C). The viscoelastic bridges have the net effect of shielding the crack tips from transient thermal stresses due to thermal shock. They therefore improve the cold shock resistance of the ceramic. The insights developed from the experiments were used to guide the development of a fracture mechanics model for the prediction of viscoelastic toughening due to crack bridging.</description><subject>Aluminosilicates</subject><subject>Aluminum oxide</subject><subject>Aluminum silicates</subject><subject>Applied sciences</subject><subject>Ceramic</subject><subject>Ceramics</subject><subject>Exact sciences and technology</subject><subject>Glassy</subject><subject>Mathematical models</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Modeling</subject><subject>Toughening</subject><subject>Viscoelastic bridges</subject><subject>Viscoelasticity</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhhdRsFZ_grAXxcuuk6_9uChS_IKCF_UaptnZmrK70WQr9N-b0oI3hYTM4Zl5J0-SnDPIGbDiepWjGbHHMecARQ48B6gPkgmrSpFxqcRhrIWqs0IqeZychLACYLyUMElu3m0wjjoMozXp6NbLDxrssExdm2K37u3ggu2swZFST62PSc5vUkMee2vCaXLUYhfobP9Ok7eH-9fZUzZ_eXye3c0zI0GMWY28hkK2QkpB8YiyYS3W1LC4keIITbuQiqCVuGBFidXCcKVQFfHWBXIxTS53cz-9-1pTGHUf96auw4HcOmhey0pyySJ49SfIoOKsqkCKiKodarwLIX5Of3rbo99ESG_F6pXei9VbsRq4jmJj38U-AoPBLjoZjA2_zWUFINh2_u2Ooyjm25LXwVgaDDXWkxl14-w_ST8sYJDS</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Baker, Timothy J.</creator><creator>Zimba, Josephat</creator><creator>Akpan, Edem T.</creator><creator>Bashir, Ishmael</creator><creator>Watola, Conrad T.</creator><creator>Soboyejo, Winston O.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20060601</creationdate><title>Viscoelastic toughening of aluminosilicate refractory ceramics</title><author>Baker, Timothy J. ; Zimba, Josephat ; Akpan, Edem T. ; Bashir, Ishmael ; Watola, Conrad T. ; Soboyejo, Winston O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-9a29064f3443e43e37d1fa9ed145452a0dfb45e0f4ab167a8bc255a565a596a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aluminosilicates</topic><topic>Aluminum oxide</topic><topic>Aluminum silicates</topic><topic>Applied sciences</topic><topic>Ceramic</topic><topic>Ceramics</topic><topic>Exact sciences and technology</topic><topic>Glassy</topic><topic>Mathematical models</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Modeling</topic><topic>Toughening</topic><topic>Viscoelastic bridges</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baker, Timothy J.</creatorcontrib><creatorcontrib>Zimba, Josephat</creatorcontrib><creatorcontrib>Akpan, Edem T.</creatorcontrib><creatorcontrib>Bashir, Ishmael</creatorcontrib><creatorcontrib>Watola, Conrad T.</creatorcontrib><creatorcontrib>Soboyejo, Winston O.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baker, Timothy J.</au><au>Zimba, Josephat</au><au>Akpan, Edem T.</au><au>Bashir, Ishmael</au><au>Watola, Conrad T.</au><au>Soboyejo, Winston O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscoelastic toughening of aluminosilicate refractory ceramics</atitle><jtitle>Acta materialia</jtitle><date>2006-06-01</date><risdate>2006</risdate><volume>54</volume><issue>10</issue><spage>2665</spage><epage>2675</epage><pages>2665-2675</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>This paper presents the results of a combined experimental and theoretical study of the effects of Na 2O addition on the microstructure, viscoelastic toughening and thermal shock resistance of aluminosilicate refractory ceramics. The Na 2O was added to change the viscosity–temperature characteristics of the glassy phase and to promote viscoelastic toughening. It was observed that doping of an aluminosilicate with 4–6 wt.% Na 2O significantly alters the microstructure, from mullite within a glassy matrix to aluminum oxide laths within a glassy matrix. The glassy matrix is shown to form viscoelastic ligaments. These bridge cracks form and grow during cold shock from elevated temperatures (1100–1400 °C). The viscoelastic bridges have the net effect of shielding the crack tips from transient thermal stresses due to thermal shock. They therefore improve the cold shock resistance of the ceramic. The insights developed from the experiments were used to guide the development of a fracture mechanics model for the prediction of viscoelastic toughening due to crack bridging.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2006.02.009</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2006-06, Vol.54 (10), p.2665-2675
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_29484241
source Access via ScienceDirect (Elsevier)
subjects Aluminosilicates
Aluminum oxide
Aluminum silicates
Applied sciences
Ceramic
Ceramics
Exact sciences and technology
Glassy
Mathematical models
Metals. Metallurgy
Microstructure
Modeling
Toughening
Viscoelastic bridges
Viscoelasticity
title Viscoelastic toughening of aluminosilicate refractory ceramics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscoelastic%20toughening%20of%20aluminosilicate%20refractory%20ceramics&rft.jtitle=Acta%20materialia&rft.au=Baker,%20Timothy%20J.&rft.date=2006-06-01&rft.volume=54&rft.issue=10&rft.spage=2665&rft.epage=2675&rft.pages=2665-2675&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2006.02.009&rft_dat=%3Cproquest_cross%3E1082188043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082188043&rft_id=info:pmid/&rft_els_id=S1359645406001315&rfr_iscdi=true