Viscoelastic toughening of aluminosilicate refractory ceramics
This paper presents the results of a combined experimental and theoretical study of the effects of Na 2O addition on the microstructure, viscoelastic toughening and thermal shock resistance of aluminosilicate refractory ceramics. The Na 2O was added to change the viscosity–temperature characteristic...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2006-06, Vol.54 (10), p.2665-2675 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2675 |
---|---|
container_issue | 10 |
container_start_page | 2665 |
container_title | Acta materialia |
container_volume | 54 |
creator | Baker, Timothy J. Zimba, Josephat Akpan, Edem T. Bashir, Ishmael Watola, Conrad T. Soboyejo, Winston O. |
description | This paper presents the results of a combined experimental and theoretical study of the effects of Na
2O addition on the microstructure, viscoelastic toughening and thermal shock resistance of aluminosilicate refractory ceramics. The Na
2O was added to change the viscosity–temperature characteristics of the glassy phase and to promote viscoelastic toughening. It was observed that doping of an aluminosilicate with 4–6
wt.% Na
2O significantly alters the microstructure, from mullite within a glassy matrix to aluminum oxide laths within a glassy matrix. The glassy matrix is shown to form viscoelastic ligaments. These bridge cracks form and grow during cold shock from elevated temperatures (1100–1400
°C). The viscoelastic bridges have the net effect of shielding the crack tips from transient thermal stresses due to thermal shock. They therefore improve the cold shock resistance of the ceramic. The insights developed from the experiments were used to guide the development of a fracture mechanics model for the prediction of viscoelastic toughening due to crack bridging. |
doi_str_mv | 10.1016/j.actamat.2006.02.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29484241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645406001315</els_id><sourcerecordid>1082188043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-9a29064f3443e43e37d1fa9ed145452a0dfb45e0f4ab167a8bc255a565a596a23</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhhdRsFZ_grAXxcuuk6_9uChS_IKCF_UaptnZmrK70WQr9N-b0oI3hYTM4Zl5J0-SnDPIGbDiepWjGbHHMecARQ48B6gPkgmrSpFxqcRhrIWqs0IqeZychLACYLyUMElu3m0wjjoMozXp6NbLDxrssExdm2K37u3ggu2swZFST62PSc5vUkMee2vCaXLUYhfobP9Ok7eH-9fZUzZ_eXye3c0zI0GMWY28hkK2QkpB8YiyYS3W1LC4keIITbuQiqCVuGBFidXCcKVQFfHWBXIxTS53cz-9-1pTGHUf96auw4HcOmhey0pyySJ49SfIoOKsqkCKiKodarwLIX5Of3rbo99ESG_F6pXei9VbsRq4jmJj38U-AoPBLjoZjA2_zWUFINh2_u2Ooyjm25LXwVgaDDXWkxl14-w_ST8sYJDS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082188043</pqid></control><display><type>article</type><title>Viscoelastic toughening of aluminosilicate refractory ceramics</title><source>Access via ScienceDirect (Elsevier)</source><creator>Baker, Timothy J. ; Zimba, Josephat ; Akpan, Edem T. ; Bashir, Ishmael ; Watola, Conrad T. ; Soboyejo, Winston O.</creator><creatorcontrib>Baker, Timothy J. ; Zimba, Josephat ; Akpan, Edem T. ; Bashir, Ishmael ; Watola, Conrad T. ; Soboyejo, Winston O.</creatorcontrib><description>This paper presents the results of a combined experimental and theoretical study of the effects of Na
2O addition on the microstructure, viscoelastic toughening and thermal shock resistance of aluminosilicate refractory ceramics. The Na
2O was added to change the viscosity–temperature characteristics of the glassy phase and to promote viscoelastic toughening. It was observed that doping of an aluminosilicate with 4–6
wt.% Na
2O significantly alters the microstructure, from mullite within a glassy matrix to aluminum oxide laths within a glassy matrix. The glassy matrix is shown to form viscoelastic ligaments. These bridge cracks form and grow during cold shock from elevated temperatures (1100–1400
°C). The viscoelastic bridges have the net effect of shielding the crack tips from transient thermal stresses due to thermal shock. They therefore improve the cold shock resistance of the ceramic. The insights developed from the experiments were used to guide the development of a fracture mechanics model for the prediction of viscoelastic toughening due to crack bridging.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2006.02.009</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aluminosilicates ; Aluminum oxide ; Aluminum silicates ; Applied sciences ; Ceramic ; Ceramics ; Exact sciences and technology ; Glassy ; Mathematical models ; Metals. Metallurgy ; Microstructure ; Modeling ; Toughening ; Viscoelastic bridges ; Viscoelasticity</subject><ispartof>Acta materialia, 2006-06, Vol.54 (10), p.2665-2675</ispartof><rights>2006 Acta Materialia Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-9a29064f3443e43e37d1fa9ed145452a0dfb45e0f4ab167a8bc255a565a596a23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2006.02.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17800313$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baker, Timothy J.</creatorcontrib><creatorcontrib>Zimba, Josephat</creatorcontrib><creatorcontrib>Akpan, Edem T.</creatorcontrib><creatorcontrib>Bashir, Ishmael</creatorcontrib><creatorcontrib>Watola, Conrad T.</creatorcontrib><creatorcontrib>Soboyejo, Winston O.</creatorcontrib><title>Viscoelastic toughening of aluminosilicate refractory ceramics</title><title>Acta materialia</title><description>This paper presents the results of a combined experimental and theoretical study of the effects of Na
2O addition on the microstructure, viscoelastic toughening and thermal shock resistance of aluminosilicate refractory ceramics. The Na
2O was added to change the viscosity–temperature characteristics of the glassy phase and to promote viscoelastic toughening. It was observed that doping of an aluminosilicate with 4–6
wt.% Na
2O significantly alters the microstructure, from mullite within a glassy matrix to aluminum oxide laths within a glassy matrix. The glassy matrix is shown to form viscoelastic ligaments. These bridge cracks form and grow during cold shock from elevated temperatures (1100–1400
°C). The viscoelastic bridges have the net effect of shielding the crack tips from transient thermal stresses due to thermal shock. They therefore improve the cold shock resistance of the ceramic. The insights developed from the experiments were used to guide the development of a fracture mechanics model for the prediction of viscoelastic toughening due to crack bridging.</description><subject>Aluminosilicates</subject><subject>Aluminum oxide</subject><subject>Aluminum silicates</subject><subject>Applied sciences</subject><subject>Ceramic</subject><subject>Ceramics</subject><subject>Exact sciences and technology</subject><subject>Glassy</subject><subject>Mathematical models</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Modeling</subject><subject>Toughening</subject><subject>Viscoelastic bridges</subject><subject>Viscoelasticity</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhhdRsFZ_grAXxcuuk6_9uChS_IKCF_UaptnZmrK70WQr9N-b0oI3hYTM4Zl5J0-SnDPIGbDiepWjGbHHMecARQ48B6gPkgmrSpFxqcRhrIWqs0IqeZychLACYLyUMElu3m0wjjoMozXp6NbLDxrssExdm2K37u3ggu2swZFST62PSc5vUkMee2vCaXLUYhfobP9Ok7eH-9fZUzZ_eXye3c0zI0GMWY28hkK2QkpB8YiyYS3W1LC4keIITbuQiqCVuGBFidXCcKVQFfHWBXIxTS53cz-9-1pTGHUf96auw4HcOmhey0pyySJ49SfIoOKsqkCKiKodarwLIX5Of3rbo99ESG_F6pXei9VbsRq4jmJj38U-AoPBLjoZjA2_zWUFINh2_u2Ooyjm25LXwVgaDDXWkxl14-w_ST8sYJDS</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Baker, Timothy J.</creator><creator>Zimba, Josephat</creator><creator>Akpan, Edem T.</creator><creator>Bashir, Ishmael</creator><creator>Watola, Conrad T.</creator><creator>Soboyejo, Winston O.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20060601</creationdate><title>Viscoelastic toughening of aluminosilicate refractory ceramics</title><author>Baker, Timothy J. ; Zimba, Josephat ; Akpan, Edem T. ; Bashir, Ishmael ; Watola, Conrad T. ; Soboyejo, Winston O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-9a29064f3443e43e37d1fa9ed145452a0dfb45e0f4ab167a8bc255a565a596a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aluminosilicates</topic><topic>Aluminum oxide</topic><topic>Aluminum silicates</topic><topic>Applied sciences</topic><topic>Ceramic</topic><topic>Ceramics</topic><topic>Exact sciences and technology</topic><topic>Glassy</topic><topic>Mathematical models</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Modeling</topic><topic>Toughening</topic><topic>Viscoelastic bridges</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baker, Timothy J.</creatorcontrib><creatorcontrib>Zimba, Josephat</creatorcontrib><creatorcontrib>Akpan, Edem T.</creatorcontrib><creatorcontrib>Bashir, Ishmael</creatorcontrib><creatorcontrib>Watola, Conrad T.</creatorcontrib><creatorcontrib>Soboyejo, Winston O.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baker, Timothy J.</au><au>Zimba, Josephat</au><au>Akpan, Edem T.</au><au>Bashir, Ishmael</au><au>Watola, Conrad T.</au><au>Soboyejo, Winston O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscoelastic toughening of aluminosilicate refractory ceramics</atitle><jtitle>Acta materialia</jtitle><date>2006-06-01</date><risdate>2006</risdate><volume>54</volume><issue>10</issue><spage>2665</spage><epage>2675</epage><pages>2665-2675</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>This paper presents the results of a combined experimental and theoretical study of the effects of Na
2O addition on the microstructure, viscoelastic toughening and thermal shock resistance of aluminosilicate refractory ceramics. The Na
2O was added to change the viscosity–temperature characteristics of the glassy phase and to promote viscoelastic toughening. It was observed that doping of an aluminosilicate with 4–6
wt.% Na
2O significantly alters the microstructure, from mullite within a glassy matrix to aluminum oxide laths within a glassy matrix. The glassy matrix is shown to form viscoelastic ligaments. These bridge cracks form and grow during cold shock from elevated temperatures (1100–1400
°C). The viscoelastic bridges have the net effect of shielding the crack tips from transient thermal stresses due to thermal shock. They therefore improve the cold shock resistance of the ceramic. The insights developed from the experiments were used to guide the development of a fracture mechanics model for the prediction of viscoelastic toughening due to crack bridging.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2006.02.009</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2006-06, Vol.54 (10), p.2665-2675 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_proquest_miscellaneous_29484241 |
source | Access via ScienceDirect (Elsevier) |
subjects | Aluminosilicates Aluminum oxide Aluminum silicates Applied sciences Ceramic Ceramics Exact sciences and technology Glassy Mathematical models Metals. Metallurgy Microstructure Modeling Toughening Viscoelastic bridges Viscoelasticity |
title | Viscoelastic toughening of aluminosilicate refractory ceramics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscoelastic%20toughening%20of%20aluminosilicate%20refractory%20ceramics&rft.jtitle=Acta%20materialia&rft.au=Baker,%20Timothy%20J.&rft.date=2006-06-01&rft.volume=54&rft.issue=10&rft.spage=2665&rft.epage=2675&rft.pages=2665-2675&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2006.02.009&rft_dat=%3Cproquest_cross%3E1082188043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082188043&rft_id=info:pmid/&rft_els_id=S1359645406001315&rfr_iscdi=true |